The role of WRKY transcription factors in plant abiotic stresses

被引:707
作者
Chen, Ligang [1 ]
Song, Yu [1 ]
Li, Shujia [1 ]
Zhang, Liping [1 ]
Zou, Changsong [1 ]
Yu, Diqiu [1 ]
机构
[1] Chinese Acad Sci, Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Mengla 666303, Yunnan, Peoples R China
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS | 2012年 / 1819卷 / 02期
基金
中国科学院基金; 中国国家自然科学基金;
关键词
WRKY transcription factor; Transcriptional reprogramming; Abiotic stress; CYTOSOLIC ASCORBATE PEROXIDASE-1; GENE-EXPRESSION; ABSCISIC-ACID; FUNCTIONAL-ANALYSIS; DNA-BINDING; DISEASE RESISTANCE; ARABIDOPSIS WRKY18; DROUGHT TOLERANCE; SALICYLIC-ACID; FACTOR FAMILY;
D O I
10.1016/j.bbagrm.2011.09.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The WRKY gene family has been suggested to play important roles in the regulation of transcriptional reprogramming associated with plant stress responses. Modification of the expression patterns of WRKY genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. Furthermore, a single WRKY gene often responds to several stress factors, and then their proteins may participate in the regulation of several seemingly disparate processes as negative or positive regulators. WRKY proteins also function via protein-protein interaction and autoregulation or cross-regulation is extensively recorded among WRKY genes, which help us understand the complex mechanisms of signaling and transcriptional reprogramming controlled by WRKY proteins. Here, we review recent progress made in starting to reveal the role of WRKY transcription factors in plant abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 128
页数:9
相关论文
共 97 条
[1]   MIKC* MADS Domain Heterodimers Are Required for Pollen Maturation and Tube Growth in Arabidopsis [J].
Adamczyk, Benjamin J. ;
Fernandez, Donna E. .
PLANT PHYSIOLOGY, 2009, 149 (04) :1713-1723
[2]   WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants [J].
Agarwal, Parinita ;
Reddy, M. P. ;
Chikara, Jitendra .
MOLECULAR BIOLOGY REPORTS, 2011, 38 (06) :3883-3896
[3]   The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons [J].
Babu, M. Madan ;
Iyer, Lakshminarayan M. ;
Balaji, S. ;
Aravind, L. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (22) :6505-6520
[4]  
Bhattacharjee S, 2005, CURR SCI INDIA, V89, P1113
[5]   Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana [J].
Busch, W ;
Wunderlich, M ;
Schöffl, F .
PLANT JOURNAL, 2005, 41 (01) :1-14
[6]   Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance [J].
Cai, Meng ;
Qiu, Deyun ;
Yuan, Ting ;
Ding, Xinhua ;
Li, Hongjing ;
Duan, Liu ;
Xu, Caiguo ;
Li, Xianghua ;
Wang, Shiping .
PLANT CELL AND ENVIRONMENT, 2008, 31 (01) :86-96
[7]   Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress [J].
Chen, Han ;
Lai, Zhibing ;
Shi, Junwei ;
Xiao, Yong ;
Chen, Zhixiang ;
Xu, Xinping .
BMC PLANT BIOLOGY, 2010, 10
[8]   Wounding-Induced WRKY8 Is Involved in Basal Defense in Arabidopsis [J].
Chen, Ligang ;
Zhang, Liping ;
Yu, Diqiu .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2010, 23 (05) :558-565
[9]   The WRKY6 Transcription Factor Modulates PHOSPHATE1 Expression in Response to Low Pi Stress in Arabidopsis [J].
Chen, Yi-Fang ;
Li, Li-Qin ;
Xu, Qian ;
Kong, You-Han ;
Wang, Hui ;
Wu, Wei-Hua .
PLANT CELL, 2009, 21 (11) :3554-3566
[10]   Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants [J].
Chinnusamy, V ;
Schumaker, K ;
Zhu, JK .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (395) :225-236