The WRKY6 Transcription Factor Modulates PHOSPHATE1 Expression in Response to Low Pi Stress in Arabidopsis

被引:346
作者
Chen, Yi-Fang [1 ]
Li, Li-Qin [1 ]
Xu, Qian [1 ]
Kong, You-Han [1 ]
Wang, Hui [1 ]
Wu, Wei-Hua [1 ]
机构
[1] China Agr Univ, Coll Biol Sci, State Key Lab Plant Physiol & Biochem, Natl Plant Gene Res Ctr Beijing, Beijing 100193, Peoples R China
基金
美国国家科学基金会;
关键词
DNA-BINDING; SIGNALING PATHWAY; ROOT DEVELOPMENT; PLANT-RESPONSES; DROUGHT STRESS; STARVATION; HOMEOSTASIS; DEFICIENCY; SENESCENCE; PROTEINS;
D O I
10.1105/tpc.108.064980
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arabidopsis thaliana WRKY family comprises 74 members and some of them are involved in plant responses to biotic and abiotic stresses. This study demonstrated that WRKY6 is involved in Arabidopsis responses to low-Pi stress through regulating PHOSPHATE1 (PHO1) expression. WRKY6 overexpression lines, similar to the pho1 mutant, were more sensitive to low Pi stress and had lower Pi contents in shoots compared with wild-type seedlings and the wrky6-1 mutant. Immunoprecipitation assays demonstrated that WRKY6 can bind to two W-boxes of the PHO1 promoter. RNA gel blot and beta-glucuronidase activity assays showed that PHO1 expression was repressed in WRKY6-overexpressing lines and enhanced in the wrky6-1 mutant. Low Pi treatment reduced WRKY6 binding to the PHO1 promoter, which indicates that PHO1 regulation by WRKY6 is Pi dependent and that low Pi treatment may release inhibition of PHO1 expression. Protein gel blot analysis showed that the decrease in WRKY6 protein induced by low Pi treatment was inhibited by a 26S proteosome inhibitor, MG132, suggesting that low Pi-induced release of PHO1 repression may result from 26S proteosome-mediated proteolysis. In addition, WRKY42 also showed binding to W-boxes of the PHO1 promoter and repressed PHO1 expression. Our results demonstrate that WRKY6 and WRKY42 are involved in Arabidopsis responses to low Pi stress by regulation of PHO1 expression.
引用
收藏
页码:3554 / 3566
页数:13
相关论文
共 65 条
[1]  
[Anonymous], 1966, METHODS ENZYMOL, DOI DOI 10.1016/0076-6879(66)08014-5
[2]   pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene [J].
Aung, Kyaw ;
Lin, Shu-I ;
Wu, Chia-Chune ;
Huang, Yu-Ting ;
Su, Chun-Lin ;
Chiou, Tzyy-Jen .
PLANT PHYSIOLOGY, 2006, 141 (03) :1000-1011
[3]   PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants [J].
Bari, Rajendra ;
Pant, Bikram Datt ;
Stitt, Mark ;
Scheible, Wolf-Ruediger .
PLANT PHYSIOLOGY, 2006, 141 (03) :988-999
[4]   BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis [J].
Chen, Zhi-Hui ;
Nimmo, Gillian A. ;
Jenkins, Gareth I. ;
Nimmo, Hugh G. .
BIOCHEMICAL JOURNAL, 2007, 405 (01) :191-198
[5]   Regulation of phosphate homeostasis by microRNA in Arabidopsis [J].
Chiou, TJ ;
Aung, K ;
Lin, SI ;
Wu, CC ;
Chiang, SF ;
Su, CL .
PLANT CELL, 2006, 18 (02) :412-421
[6]   Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function [J].
Ciolkowski, Ingo ;
Wanke, Dierk ;
Birkenbihl, Rainer P. ;
Somssich, Imre E. .
PLANT MOLECULAR BIOLOGY, 2008, 68 (1-2) :81-92
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6 [J].
Devaiah, Ballachanda N. ;
Nagarajan, Vinay K. ;
Raghothama, Kashchandra G. .
PLANT PHYSIOLOGY, 2007, 145 (01) :147-159
[9]   WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis [J].
Devaiah, Ballachanda N. ;
Karthikeyan, Athikkattuvalasu S. ;
Raghothama, Kashchandra G. .
PLANT PHYSIOLOGY, 2007, 143 (04) :1789-1801
[10]   Phosphate Starvation Responses and Gibberellic Acid Biosynthesis Are Regulated by the MYB62 Transcription Factor in Arabidopsis [J].
Devaiah, Ballachanda N. ;
Madhuvanthi, Ramaiah ;
Karthikeyan, Athikkattuvalasu S. ;
Raghothama, Kashchandra G. .
MOLECULAR PLANT, 2009, 2 (01) :43-58