SIGIRR inhibits interleukin-1 receptor- and toll-like receptor 4-mediated signaling through different mechanisms

被引:175
作者
Qin, JZ [1 ]
Qian, YC [1 ]
Yao, JH [1 ]
Grace, C [1 ]
Li, XX [1 ]
机构
[1] Cleveland Clin Fdn, Dept Immunol, Cleveland, OH 44195 USA
关键词
D O I
10.1074/jbc.M501363200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Toll-interleukin-1 receptor (TIR) domain-containing orphan receptor SIGIRR (single immunoglobulin interleukin-1 receptor-related protein) acts as a negative regulator of interleukin (IL)-1 and lipopolysaccharide (LPS) signaling. Endogenous SIGIRR transiently interacted with IL-1 receptor and the receptor-proximal signaling components (MyD88, IRAK, and tumor necrosis factor receptor-associated factor 6) upon IL-1 stimulation, indicating that SIGIRR interacts with the IL-1 receptor complex in a ligand-dependent manner. Similar interaction was also observed between SIGIRR and Toll-like receptor 4 receptor complex upon LPS stimulation. To identify the domains of SIGIRR required for its interaction with the Toll-like receptor 4 and IL-1 receptor complexes, several SIGIRR deletion mutants were generated, including Delta N (lacking the extracellular immunoglobulin (Ig) domain with deletion of amino acids 1-119), Delta C ( lacking the C-terminal domain with deletion of amino acids 313-410), and Delta TIR (lacking the TIR domain with deletion of amino acids 161-313). Whereas both the extracellular Ig domain and the intracellular TIR domains are important for SIGIRR to inhibit IL-1 signaling, only the TIR domain is necessary for SIGIRR to inhibit LPS signaling. The extracellular Ig domain exerts its inhibitory role in IL-1 signaling by interfering with the heterodimerization of IL-1 receptor and IL-1RAcP, whereas the intracellular TIR domain inhibits both IL-1 and LPS signaling by attenuating the recruitment of receptor-proximal signaling components to the receptor. These results indicate that SIGIRR inhibits IL-1 and LPS signaling pathways through differential mechanisms.
引用
收藏
页码:25233 / 25241
页数:9
相关论文
共 56 条
[1]   Mechanisms of disease - Nuclear factor-kappa b - A pivotal transcription factor in chronic inflammatory diseases [J].
Barnes, PJ ;
Larin, M .
NEW ENGLAND JOURNAL OF MEDICINE, 1997, 336 (15) :1066-1071
[2]   ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance [J].
Brint, EK ;
Xu, DM ;
Liu, HY ;
Dunne, A ;
McKenzie, ANJ ;
O'Neill, LAJ ;
Liew, FY .
NATURE IMMUNOLOGY, 2004, 5 (04) :373-379
[3]   Inhibition of interleukin 1 receptor/toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4 [J].
Burns, K ;
Janssens, S ;
Brissoni, B ;
Olivos, N ;
Beyaert, R ;
Tschopp, J .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 197 (02) :263-268
[4]   TARF6 is a signal transducer for interleukin-1 [J].
Cao, ZD ;
Xiong, J ;
Takeuchi, M ;
Kurama, T ;
Goeddel, DV .
NATURE, 1996, 383 (6599) :443-446
[5]   IRAK: A kinase associated with the interleukin-1 receptor [J].
Cao, ZD ;
Henzel, WJ ;
Gao, XO .
SCIENCE, 1996, 271 (5252) :1128-1131
[6]   Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors [J].
Chuang, TH ;
Ulevitch, RJ .
NATURE IMMUNOLOGY, 2004, 5 (05) :495-502
[7]  
Chuang TH, 2000, EUR CYTOKINE NETW, V11, P372
[8]   Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex - Transfer from CD14 to TLR4 and MD-2 [J].
Correia, JD ;
Soldau, K ;
Christen, U ;
Tobias, PS ;
Ulevitch, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (24) :21129-21135
[9]   Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain [J].
Deng, L ;
Wang, C ;
Spencer, E ;
Yang, LY ;
Braun, A ;
You, JX ;
Slaughter, C ;
Pickart, C ;
Chen, ZJ .
CELL, 2000, 103 (02) :351-361
[10]   Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA [J].
Diebold, SS ;
Kaisho, T ;
Hemmi, H ;
Akira, S ;
Sousa, CRE .
SCIENCE, 2004, 303 (5663) :1529-1531