Microporous organic polymers for carbon dioxide capture

被引:554
作者
Dawson, Robert [1 ]
Stoeckel, Ev
Holst, James R.
Adams, Dave J.
Cooper, Andrew I.
机构
[1] Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
HIGH-SURFACE-AREA; ZEOLITIC IMIDAZOLATE FRAMEWORKS; HYDROGEN STORAGE MATERIALS; CO2; CAPTURE; ACTIVATED CARBON; NETWORKS; POLYMERIZATION; CRYSTALLINE; ADSORPTION; SEPARATION;
D O I
10.1039/c1ee01971f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anthropogenic carbon dioxide emissions are thought to be one cause of global warming. Current methods for CO2 capture result in large energy penalties. Solid adsorbents are a potential method to capture CO2, but the sorbent-sorbate affinity is critical in determining the energetic viability of such processes. In this study, the adsorption of CO2 in a range of microporous organic polymers was tested. These materials adsorb up to 2.20 mmol/g CO2 at 298 K and 1 bar, and thus performance is compared with related porous solids in the literature. The relationship between CO2 uptake and apparent surface area and pore size is described, and this showed that heats of adsorption were important in the low pressure regime. The chemical tuning of gas-sorbent affinity provides a blueprint for the development of improved materials in this area.
引用
收藏
页码:4239 / 4245
页数:7
相关论文
共 61 条
  • [11] Development of adsorbent technologies for post-combustion CO2 capture
    Drage, T. C.
    Smith, K. M.
    Pevida, C.
    Arenillas, A.
    Snape, C. E.
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 881 - 884
  • [12] Evaluation of Activated Carbon Adsorbents for CO2 Capture in Gasification
    Drage, Trevor C.
    Blackman, James M.
    Pevida, Cova
    Snape, Colin E.
    [J]. ENERGY & FUELS, 2009, 23 (5-6) : 2790 - 2796
  • [13] Designed synthesis of 3D covalent organic frameworks
    El-Kaderi, Hani M.
    Hunt, Joseph R.
    Mendoza-Cortes, Jose L.
    Cote, Adrien P.
    Taylor, Robert E.
    O'Keeffe, Michael
    Yaghi, Omar M.
    [J]. SCIENCE, 2007, 316 (5822) : 268 - 272
  • [14] Why hybrid porous solids capture greenhouse gases?
    Ferey, Gerard
    Serre, Christian
    Devic, Thomas
    Maurin, Guillaume
    Jobic, Herve
    Llewellyn, Philip L.
    De Weireld, Guy
    Vimont, Alexandre
    Daturi, Marco
    Chang, Jong-San
    [J]. CHEMICAL SOCIETY REVIEWS, 2011, 40 (02) : 550 - 562
  • [15] Synthesis of spherical ultra-high-surface-area monodisperse amphipathic polymer sponges in the low-micrometer size range
    Fontanals, Nuria
    Manesiotis, Panagiotis
    Sherrington, David C.
    Cormack, Peter A. G.
    [J]. ADVANCED MATERIALS, 2008, 20 (07) : 1298 - +
  • [16] Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications
    Furukawa, Hiroyasu
    Yaghi, Omar M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) : 8875 - 8883
  • [17] Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide
    Gray, M. L.
    Champagne, K. J.
    Fauth, D.
    Baltrus, J. P.
    Pennline, Henry
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2008, 2 (01) : 3 - 8
  • [18] Carbon Capture and Storage: How Green Can Black Be?
    Haszeldine, R. Stuart
    [J]. SCIENCE, 2009, 325 (5948) : 1647 - 1652
  • [19] Ultrahigh Surface Area in Porous Solids
    Holst, James R.
    Cooper, Andrew I.
    [J]. ADVANCED MATERIALS, 2010, 22 (45) : 5212 - 5216
  • [20] High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and "Click" Chemistry
    Holst, James R.
    Stoeckel, Ev
    Adams, Dave J.
    Cooper, Andrew I.
    [J]. MACROMOLECULES, 2010, 43 (20) : 8531 - 8538