Running couplings and triviality of field theories on noncommutative spaces

被引:10
作者
Akhmedov, ET [1 ]
DeBoer, P
Semenoff, GW
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
关键词
D O I
10.1103/PhysRevD.64.065005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine the issue of renormalizability of asymptotically free field theories on noncommutative spaces. As an example, we solve the noncommutative O(N) invariant Gross-Neveu model at large N. On commutative space this is a renormalizable model with nontrivial interactions. On the noncommutative space, if we take the translation-invariant ground state, we find that the model is nonrenormalizable. Removing the ultraviolet cutoff yields a trivial noninteracting theory.
引用
收藏
页数:5
相关论文
共 16 条
[1]   Nonperturbative dynamics of noncommutative gauge theory [J].
Ambjorn, J ;
Makeenko, YM ;
Nishimura, J ;
Szabo, RJ .
PHYSICS LETTERS B, 2000, 480 (3-4) :399-408
[2]  
Chepelev I, 2000, J HIGH ENERGY PHYS
[3]  
Chepelev I, 2001, J HIGH ENERGY PHYS
[4]   Constrained quantization of open string in background B field and non-commutative D-brane [J].
Chu, CS ;
Ho, PM .
NUCLEAR PHYSICS B, 2000, 568 (1-2) :447-456
[5]  
Connes A, 1998, J HIGH ENERGY PHYS
[6]   Divergencies in a field theory on quantum space [J].
Filk, T .
PHYSICS LETTERS B, 1996, 376 (1-3) :53-58
[7]   Space-time noncommutative field theories and unitarity [J].
Gomis, J ;
Mehen, T .
NUCLEAR PHYSICS B, 2000, 591 (1-2) :265-276
[8]   Noncommutative geometry and D-branes [J].
Ho, PM ;
Wu, YS .
PHYSICS LETTERS B, 1997, 398 (1-2) :52-60
[9]  
Laidlaw M, 2001, J HIGH ENERGY PHYS
[10]   Canonical quantization of open string and noncommutative geometry [J].
Lee, T .
PHYSICAL REVIEW D, 2000, 62 (02) :1-6