Random-Effects Model Aimed at Discovering Associations in Meta-Analysis of Genome-wide Association Studies

被引:459
作者
Han, Buhm [1 ]
Eskin, Eleazar [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90024 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SUSCEPTIBILITY LOCI; HETEROGENEITY; RISK; REPLICATION; UNCERTAINTY; RATIO;
D O I
10.1016/j.ajhg.2011.04.014
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Meta-analysis is an increasingly popular tool for combining multiple different genome-wide association studies (GWASs) in a single aggregate analysis in order to identify associations with very small effect sizes. Because the data of a meta-analysis can be heterogeneous, referring to the differences in effect sizes between the collected studies, what is often done in the literature is to apply both the fixed-effects model (FE) under an assumption of the same effect size between studies and the random-effects model (RE) under an assumption of varying effect size between studies. However, surprisingly, RE gives less significant p values than FE at variants that actually show varying effect sizes between studies. This is ironic because RE is designed specifically for the case in which there is heterogeneity. As a result, usually, RE does not discover any associations that FE did not discover. In this paper, we show that the underlying reason for this phenomenon is that RE implicitly assumes a markedly conservative null-hypothesis model, and we present a new random-effects model that relaxes the conservative assumption. Unlike the traditional RE, the new method is shown to achieve higher statistical power than FE when there is heterogeneity, indicating that the new method has practical utility for discovering associations in the meta-analysis of GWASs.
引用
收藏
页码:586 / 598
页数:13
相关论文
共 53 条
[1]   Advances in autism genetics: on the threshold of a new neurobiology [J].
Abrahams, Brett S. ;
Geschwind, Daniel H. .
NATURE REVIEWS GENETICS, 2008, 9 (05) :341-355
[2]   A haplotype map of the human genome [J].
Altshuler, D ;
Brooks, LD ;
Chakravarti, A ;
Collins, FS ;
Daly, MJ ;
Donnelly, P ;
Gibbs, RA ;
Belmont, JW ;
Boudreau, A ;
Leal, SM ;
Hardenbol, P ;
Pasternak, S ;
Wheeler, DA ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Zeng, CQ ;
Gao, Y ;
Hu, HR ;
Hu, WT ;
Li, CH ;
Lin, W ;
Liu, SQ ;
Pan, H ;
Tang, XL ;
Wang, J ;
Wang, W ;
Yu, J ;
Zhang, B ;
Zhang, QR ;
Zhao, HB ;
Zhao, H ;
Zhou, J ;
Gabriel, SB ;
Barry, R ;
Blumenstiel, B ;
Camargo, A ;
Defelice, M ;
Faggart, M ;
Goyette, M ;
Gupta, S ;
Moore, J ;
Nguyen, H ;
Onofrio, RC ;
Parkin, M ;
Roy, J ;
Stahl, E ;
Winchester, E ;
Ziaugra, L ;
Shen, Y .
NATURE, 2005, 437 (7063) :1299-1320
[3]   Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes [J].
Barrett, Jeffrey C. ;
Clayton, David G. ;
Concannon, Patrick ;
Akolkar, Beena ;
Cooper, Jason D. ;
Erlich, Henry A. ;
Julier, Cecile ;
Morahan, Grant ;
Nerup, Jorn ;
Nierras, Concepcion ;
Plagnol, Vincent ;
Pociot, Flemming ;
Schuilenburg, Helen ;
Smyth, Deborah J. ;
Stevens, Helen ;
Todd, John A. ;
Walker, Neil M. ;
Rich, Stephen S. .
NATURE GENETICS, 2009, 41 (06) :703-707
[4]   Population-Specific Risk of Type 2 Diabetes Conferred by HAT4A P2 Promoter Variants A Lesson for Replication Studies [J].
Barroso, Ines ;
Luan, Jian'an ;
Wheeler, Eleanor ;
Whittaker, Pamela ;
Wasson, Jon ;
Zeggini, Eleftheria ;
Weedon, Michael N. ;
Hunt, Sarah ;
Venkatesh, Ranganath ;
Frayling, Timothy M. ;
Delgado, Marcos ;
Neuman, Rosalind J. ;
Zhao, Jinghua ;
Sherva, Richard ;
Glaser, Benjamin ;
Walker, Mark ;
Hitman, Graham ;
McCarthy, Mark I. ;
Hattersley, Andrew T. ;
Permutt, M. Alan ;
Wareham, Nicholas J. ;
Deloukas, Panagiotis .
DIABETES, 2008, 57 (11) :3161-3165
[5]  
Biggerstaff BJ, 1997, STAT MED, V16, P753, DOI 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.3.CO
[6]  
2-7
[7]  
BIRCH MW, 1964, J ROY STAT SOC B, V26, P313
[8]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[9]   Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application [J].
Cantor, Rita M. ;
Lange, Kenneth ;
Sinsheimer, Janet S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (01) :6-22
[10]   THE COMBINATION OF ESTIMATES FROM DIFFERENT EXPERIMENTS [J].
COCHRAN, WG .
BIOMETRICS, 1954, 10 (01) :101-129