New families of copulas based on periodic functions

被引:22
作者
Alfonsi, A
Brigo, D
机构
[1] Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee, France
[2] Banca IMI, San Paolo IMI Grp, Milan, Italy
关键词
Archimedean copula; copula functions; dependence modeling; Gaussian copula; periodic copula; Schur functions; simulation;
D O I
10.1081/STA-200063351
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Although there exists a large variety of copula functions, only a few are practically manageable, and often the choice in dependence modeling falls on the Gaussian copula. Furthermore most copulas are exchangeable, thus implying symmetric dependence. We introduce a way to construct copulas based on periodic functions. We study the two-dimensional case based on one dependence parameter and then provide a way to extend the construction to the n-dimensional framework. We can thus construct families of copulas in dimension n and parameterized by n - 1 parameters, implying possibly asymmetric relations. Such "periodic" copulas can be simulated easily.
引用
收藏
页码:1437 / 1447
页数:11
相关论文
共 16 条
[1]  
ALFONSI A, 2002, CONSTRUCTION COPULAS
[2]  
BOUYE E, 2000, READING GUIDE SOME A
[3]  
Cherubini U., 2002, Applied Mathematical Finance, V9, P69
[4]  
EMBRECHTS P, 2001, MODELING DEPENDENCE
[5]   STATISTICAL-INFERENCE PROCEDURES FOR BIVARIATE ARCHIMEDEAN COPULAS [J].
GENEST, C ;
RIVEST, LP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :1034-1043
[6]   Comparison of methods for the computation of multivariate t probabilities [J].
Genz, A ;
Bretz, F .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (04) :950-971
[7]  
HURLIMANN W, 2003, IN PRESS COMPUTAT ST
[8]  
Joe H, 1997, MULTIVARIATE MODELS
[9]  
Jouanin J., 2001, MODELLING DEPENDENCE
[10]   Copula convergence theorems for tail events [J].
Juri, A ;
Wüthrich, MV .
INSURANCE MATHEMATICS & ECONOMICS, 2002, 30 (03) :405-420