Comparison of methods for the computation of multivariate t probabilities

被引:201
作者
Genz, A [1 ]
Bretz, F
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Leibniz Univ Hannover, LG Bioinformat, Hannover, Germany
关键词
multivariate t distribution; noncentral distribution; numerical integration; statistical computation;
D O I
10.1198/106186002394
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article compares methods for the numerical computation of multivariate t probabilities for hyper-rectangular integration regions. Methods based on acceptance-rejection, spherical-radial transformations, and separation-of-variables transformations are considered. Tests using randomly chosen problems show that the most efficient numerical methods use a transformation developed by Genz for multivariate normal probabilities. These methods allow moderately accurate multivariate t probabilities to be quickly computed for problems with as many as 20 variables. Methods for the noncentral multivariate t distribution are also described.
引用
收藏
页码:950 / 971
页数:22
相关论文
共 26 条
[1]  
BECKERS M, 1992, COMP NUMERICAL INTEG
[2]   DCUHRE - AN ADAPTIVE MULTIDIMENSIONAL INTEGRATION ROUTINE FOR A VECTOR OF INTEGRALS [J].
BERNTSEN, J ;
ESPELID, TO ;
GENZ, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04) :452-456
[3]  
CORNISH EA, 1954, AUST J PHYS, V7, P531
[4]  
Davis P, 1984, Methods of Numerical Integration, VSecond
[5]   3 DIGIT ACCURATE MULTIPLE NORMAL PROBABILITIES [J].
DEAK, I .
NUMERISCHE MATHEMATIK, 1980, 35 (04) :369-380
[6]  
DEAK I, 1990, RANDOM NUMBER GENERA, pCH7
[7]  
Deak I., 1986, Journal of Statistical Computation and Simulation, P101, DOI DOI 10.1080/00949658608810951
[8]  
FANG KT, 1994, NUMBER THEORETIC MET, P167
[9]  
Genz A, 1999, J STAT COMPUT SIM, V63, P361
[10]  
GENZ A, 1993, COMPUTING SCIENCE AND STATISTICS, VOL 25, P400