Comparison of methods for the computation of multivariate t probabilities

被引:201
作者
Genz, A [1 ]
Bretz, F
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Leibniz Univ Hannover, LG Bioinformat, Hannover, Germany
关键词
multivariate t distribution; noncentral distribution; numerical integration; statistical computation;
D O I
10.1198/106186002394
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article compares methods for the numerical computation of multivariate t probabilities for hyper-rectangular integration regions. Methods based on acceptance-rejection, spherical-radial transformations, and separation-of-variables transformations are considered. Tests using randomly chosen problems show that the most efficient numerical methods use a transformation developed by Genz for multivariate normal probabilities. These methods allow moderately accurate multivariate t probabilities to be quickly computed for problems with as many as 20 variables. Methods for the noncentral multivariate t distribution are also described.
引用
收藏
页码:950 / 971
页数:22
相关论文
共 26 条
[11]  
Genz A., 1992, J. Comput. Graph. Statist., V1, P141, DOI [DOI 10.2307/1390838, 10.1080/10618600.1992.10477010, DOI 10.1080/10618600.1992.10477010]
[12]  
GIBSON GJ, 1994, ADV NUMERICAL METHOD
[13]  
Hickernell FJ, 2002, MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, P274
[14]   A generalized discrepancy and quadrature error bound [J].
Hickernell, FJ .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :299-322
[15]  
Hsu JC, 1996, MULTIPLE COMP
[16]  
Lepage G. P., 1978, Journal of Computational Physics, V27, P192, DOI 10.1016/0021-9991(78)90004-9
[17]   MULTIVARIATE NORMAL PROBABILITIES OF STAR-SHAPED REGIONS [J].
LOHR, SL .
APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1993, 42 (03) :576-582
[18]   GENERATING CORRELATION-MATRICES [J].
MARSAGLIA, G ;
OLKIN, I .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02) :470-475
[19]  
NEIDERREITER H, 1992, CBMS NSF REGIONAL C
[20]  
SCHERVISH MJ, 1984, J R STAT SOC C-APPL, V33, P81