Spectral gap for Kac's model of Boltzmann equation

被引:51
作者
Janvresse, E [1 ]
机构
[1] Univ Rouen, CNRS UPRESA 6085, F-76821 Mt St Aignan, France
关键词
spectral gap; Kac's model; Boltzmann equation;
D O I
10.1214/aop/1008956330
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a random walk on Sn-1, the standard sphere of dimension n -1, generated by random rotations on randomly selected coordinate planes i, j with 1 less than or equal to i < j less than or equal to n. This dynamic was used by Marc Kac as a model for the spatially homogeneous Boltzmann equation. We prove that the spectral gap on Sn-1 is n(-1) up to a constant independent of n.
引用
收藏
页码:288 / 304
页数:17
相关论文
共 9 条
[1]   Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas [J].
Carlen, EA ;
Gabetta, E ;
Toscani, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 199 (03) :521-546
[2]   Bounds for Kac's master equation [J].
Diaconis, P ;
Saloff-Coste, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 209 (03) :729-755
[3]  
GRUNBAUM A, 1972, T AM MATH SOC, V165, P425
[4]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[5]  
Kac M., 1956, PROBABILITY RELATED
[6]  
Kac M., 1956, Foundations of kinetic theory, V3, P171
[7]   SPECTRAL GAP AND LOGARITHMIC SOBOLEV INEQUALITY FOR KAWASAKI AND GLAUBER DYNAMICS [J].
LU, SL ;
YAU, HT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (02) :399-433
[8]  
MCKEAN H, 1966, ARCH RATION MECH AN, V2, P343
[9]  
Meleard S., 1996, LECT NOTES MATH, V1627