Spatial smoothing and hot spot detection for CGH data using the fused lasso
被引:249
作者:
Tibshirani, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
Stanford Univ, Dept Biostat, Stanford, CA 94305 USAStanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
Tibshirani, Robert
[1
,2
]
Wang, Pei
论文数: 0引用数: 0
h-index: 0
机构:
Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USAStanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
Wang, Pei
[3
]
机构:
[1] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biostat, Stanford, CA 94305 USA
[3] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
We apply the "fused lasso" regression method of Tibshirani and others (2004) to the problem of "hotspot detection", in particular, detection of regions of gain or loss in comparative genomic hybridization (CGH) data. The fused lasso criterion leads to a convex optimization problem, and we provide a fast algorithm for its solution. Estimates of false-discovery rate are also provided. Our studies show that the new method generally outperforms competing methods for calling gains and losses in CGH data.