What is so special about Arg 55 in the catalysis of cyclophilin A? Insights from hybrid QM/MM simulations

被引:74
作者
Li, GH
Cui, Q
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[2] Univ Wisconsin, Inst Theoret Chem, Madison, WI 53706 USA
关键词
D O I
10.1021/ja0367851
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potential of mean force (PMF) simulations with a hybrid QM/MM potential function were used to analyze the catalytic mechanism of human cyclophilin A (CypA). PMF calculations were performed for proline isomerization of peptides in solution, the wild-type CypA, and several CypA mutants. With an approximate density functional theory, the self-consistent-charge density functional tight binding (SCC-DFTB) as the QM level, and CHARMM 22 force field as MM, satisfactory energetics compared to available experiments were obtained. Calculations for the Arg55Ala and zero-charge-Arg55 mutants clearly indicated that Arg 55 significantly stabilizes the isomerization transition state through electrostatic interactions. However, the decrease in the average distance (thus the increase in interaction) between Arg 55 and the substrate amide N in going from the stable states to the transition state is mainly due to the pyramidalization of the amide N rather than motions associated with Arg 55. Although the nanosecond simulations cannot exclude the existence of sub-millisecond collective motions proposed on the basis of recent elegant NMR relaxation and line-shape analyses, the energetics obtained for the various enzyme systems here indicate that the contribution from motions of active site residues to catalysis is expected to be small. Instead, the present simulations support that the structural stability rather than mobility of the preorganized active site is more important. Through hydrogen-bonding interactions among the substrate, Arg 55, Gln 63, and Asn 102, the active site of the wild-type enzyme is structurally very stable and puts Arg 55 in a favorable position to perform its catalytic role in the transition state. This is further illustrated with the somewhat unexpected prediction that Arg55Lys is largely catalytically inactive, because Lys does not have the unique bifurcating construct of the guanidino group in Arg and thus the active site of Arg55Lys cannot accommodate Lys in a position capable of providing electrostatic stabilization of the isomerization transition state. Among all the enzyme systems studied, the wild-type CypA is the only one that selects the synlexo transition state, while the syn/endo conformation is also present in the mutants, which is another reason for their higher barriers. Finally, the present analysis indicated that the population of near-attack-conformations (NAC) is not relevant to catalysis in CypA.
引用
收藏
页码:15028 / 15038
页数:11
相关论文
共 90 条
[1]   Network of coupled promoting motions in enzyme catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Rajagopalan, PTR ;
Benkovic, SJ ;
Hammes-Schiffer, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2794-2799
[3]   SUBSTRATE-SPECIFICITY FOR THE HUMAN ROTAMASE FKBP - A VIEW OF FK506 AND RAPAMYCIN AS LEUCINE (TWISTED AMIDE) PROLINE MIMICS [J].
ALBERS, MW ;
WALSH, CT ;
SCHREIBER, SL .
JOURNAL OF ORGANIC CHEMISTRY, 1990, 55 (17) :4984-4986
[4]   SIMULATION OF ENZYME-REACTIONS USING VALENCE-BOND FORCE-FIELDS AND OTHER HYBRID QUANTUM-CLASSICAL APPROACHES [J].
AQVIST, J ;
WARSHEL, A .
CHEMICAL REVIEWS, 1993, 93 (07) :2523-2544
[5]   Probability distributions for complex systems: Adaptive umbrella sampling of the potential energy [J].
Bartels, C ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (05) :865-880
[6]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[7]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[8]   Biocatalysis and biotransformation enzymology in the genomics era - Editorial overview [J].
Begley, TP ;
Tsai, MD .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (02) :228-229
[9]   Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A [J].
Bosco, DA ;
Eisenmesser, EZ ;
Pochapsky, S ;
Sundquist, WI ;
Kern, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5247-5252
[10]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217