Dopant location identification in Nd3+-doped TiO2 nanoparticles -: art. no. 155315

被引:119
作者
Li, W
Frenkel, AI
Woicik, JC
Ni, C
Shah, SI [1 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[2] Yeshiva Univ, Dept Phys, New York, NY 10016 USA
[3] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[5] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
关键词
D O I
10.1103/PhysRevB.72.155315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Large band gap semiconductors are typically doped in order to enhance their photocatalytic, photovoltaic, and other chemical and optoelectronic properties. The identification of dopant position and its local environment are essential to explore the effect of doping. X ray techniques, including extended x ray absorption fine structure, x ray photoelectron spectroscopy, and x ray diffraction, were performed to analyze the Nd (0 to 1.5 at. %) dopant location and the structural changes associated with the doping in anatase TiO2 nanoparticles, which were synthesized by metalorganic chemical vapor deposition. Nd ions were determined to have a trivalent chemical state and substitute for Ti4+ in the TiO2 structure. The substitutional Nd3+ ions cause anatase lattice expansion along c direction with a maximum value of 0.15 angstrom at 1.5 % Nd doping level and the local structure of the dopants changes towards rutile like configuration. The lengths of the nearest neighbor Nd-O and Nd-Ti bonds increase by 0.5-0.8 angstrom compared to their counterparts in the pure TiO2 host structure. The substitutional nature of Nd3+ dopants explains why they are efficient not only for charge carrier separation but also for visible light absorption in TiO2.
引用
收藏
页数:6
相关论文
共 33 条
  • [11] Howe RF., 1998, Dev. Chem. Eng. Mineral Process, V6, P55, DOI [10.1002/apj.5500060105, DOI 10.1002/APJ.5500060105, 10.1002/APJ.5500060105]
  • [12] The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide
    Karvinen, SM
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (05) : 1035 - 1043
  • [13] Efficient photochemical water splitting by a chemically modified n-TiO2 2
    Khan, SUM
    Al-Shahry, M
    Ingler, WB
    [J]. SCIENCE, 2002, 297 (5590) : 2243 - 2245
  • [14] Band gap tailoring of Nd3+-doped TiO2 nanoparticles
    Li, W
    Wang, Y
    Lin, H
    Shah, SI
    Huang, CP
    Doren, DJ
    Rykov, SA
    Chen, JG
    Barteau, MA
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (20) : 4143 - 4145
  • [15] Structure and size distribution of TiO2 nanoparticles deposited on stainless steel mesh
    Li, W
    Shah, SI
    Sung, M
    Huang, CP
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (06): : 2303 - 2308
  • [16] Photocatalytic properties of iron-doped titania semiconductors
    Litter, MI
    Navio, JA
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1996, 98 (03) : 171 - 181
  • [17] Effects of zinc(II) and iron(III) doping of titania films on their photoreactivity to decompose rhodamine B
    Ma, Y
    Zhang, XT
    Guan, ZS
    Cao, YA
    Yao, JN
    [J]. JOURNAL OF MATERIALS RESEARCH, 2001, 16 (10) : 2928 - 2933
  • [18] Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide
    Matsumoto, Y
    Murakami, M
    Shono, T
    Hasegawa, T
    Fukumura, T
    Kawasaki, M
    Ahmet, P
    Chikyow, T
    Koshihara, S
    Koinuma, H
    [J]. SCIENCE, 2001, 291 (5505) : 854 - 856
  • [19] ELECTRONIC AND OPTICAL-PROPERTIES OF 3 PHASES OF TITANIUM-DIOXIDE - RUTILE, ANATASE, AND BROOKITE
    MO, SD
    CHING, WY
    [J]. PHYSICAL REVIEW B, 1995, 51 (19) : 13023 - 13032
  • [20] ROOM-TEMPERATURE PHOTOCATALYTIC OXIDATION OF LIQUID CYCLOHEXANE INTO CYCLOHEXANONE OVER NEAT AND MODIFIED TIO2
    MU, W
    HERRMANN, JM
    PICHAT, P
    [J]. CATALYSIS LETTERS, 1989, 3 (01) : 73 - 84