Direct evidence of molecular aggregation and degradation mechanism of organic light-emitting diodes under joule heating: an STM and photoluminescence study

被引:154
作者
Gong, JR
Wan, LJ [1 ]
Lei, SB
Bai, CL
Zhang, XH
Lee, ST
机构
[1] City Univ Hong Kong, COSDAF, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing 100080, Peoples R China
[4] Chinese Acad Sci, Tech Inst Phys & Chem, Nano Organ Photoelect Lab, Beijing 100080, Peoples R China
关键词
D O I
10.1021/jp046509o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Joule heating effect on electroluminescent efficiency is important in the degradation origin of organic light-emitting diodes (OLED). Scanning tunneling microscopy (STM) and photoluminescence (PL) measurements were performed on the guest molecule BT (1,4-bis(benzothiazole-vinyl) benzene), host molecule TPBI (2, 2',2"-(1,3,5-phenylene)tris-[1-phenyl-1H-benzimidazole]), and their mixture deposited on an HOPG surface to study the OLED degradation mechanism due to thermal heating. At room temperature, BT and TPBI in the mixed layer show good compatibility and high PL intensity, but at higher temperatures, they show phase separation and aggregation into their own domains and a concomitant decrease in PL intensity. The PL intensity loss suggests ineffective energy transfer from TPBI to BT due to phase separation, which may cause OLED degradation. Scanning tunneling spectroscopy (STS) results show that the band gaps of TPBI and BT remain unchanged with the annealing temperature, suggesting that the heat-induced decay of OLED is related to the interfacial structural change rather than the respective molecular band gap. The results provide direct evidence showing how the molecular structures of the mixed layer vary and affect the PL intensity due to temperature.
引用
收藏
页码:1675 / 1682
页数:8
相关论文
共 36 条
[1]   STM-excited luminescence on organic materials [J].
Alvarado, SF ;
Libioulle, L ;
Seidler, PF .
SYNTHETIC METALS, 1997, 91 (1-3) :69-72
[2]   STM-excited electroluminescence and spectroscopy on organic materials for display applications [J].
Alvarado, SF ;
Rossi, L ;
Müller, P ;
Seidler, PF ;
Riess, W .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :89-100
[3]   High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J].
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
NATURE, 2000, 403 (6771) :750-753
[4]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[5]   Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III) [J].
Brinkmann, M ;
Gadret, G ;
Muccini, M ;
Taliani, C ;
Masciocchi, N ;
Sironi, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (21) :5147-5157
[6]   Are single molecular wires conducting? [J].
Bumm, LA ;
Arnold, JJ ;
Cygan, MT ;
Dunbar, TD ;
Burgin, TP ;
Jones, L ;
Allara, DL ;
Tour, JM ;
Weiss, PS .
SCIENCE, 1996, 271 (5256) :1705-1707
[7]   Metal chelates as emitting materials for organic electroluminescence [J].
Chen, CH ;
Shi, JM .
COORDINATION CHEMISTRY REVIEWS, 1998, 171 :161-174
[8]   Nanoscale covalent self-assembly approach to enhancing anode/hole-transport layer interfacial stability and charge injection efficiency in organic light-emitting diodes [J].
Cui, J ;
Huang, QL ;
Wang, QW ;
Marks, TJ .
LANGMUIR, 2001, 17 (07) :2051-2054
[9]   Molecule rectifier fabricated by capillary tunnel junction [J].
Fan, XL ;
Wang, C ;
Yang, DL ;
Wan, LJ ;
Bai, CL .
CHEMICAL PHYSICS LETTERS, 2002, 361 (5-6) :465-468
[10]   TUNNELING SPECTROSCOPY OF THE (110)-SURFACE OF DIRECT-GAP III-V SEMICONDUCTORS [J].
FEENSTRA, RM .
PHYSICAL REVIEW B, 1994, 50 (07) :4561-4570