Cardiac growth and angiogenesis coordinated by intertissue interactions

被引:71
作者
Walsh, Kenneth
Shiojima, Ichiro
机构
[1] Boston Univ, Sch Med, Whitaker Cardiovasc Inst, Mol Cardiol Unit, Boston, MA 02118 USA
[2] Chiba Univ, Sch Med, Dept Cardiovasc Sci & Med, Chiba 280, Japan
关键词
D O I
10.1172/JCI34126
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Cardiac hypertrophy and angiogenesis are coordinately regulated during physiological or adaptive cardiac growth, and disruption of the balanced growth and angiogenesis leads to contractile dysfunction and heart failure. Coordination of growth and angiogenesis is in part mediated by the secretion of angiogenic growth factors from myocytes in response to hypertrophic stimuli, which enables the vasculature to "catch up" to the growth of the myocardium. In this issue of the JCI, two studies provide novel insights into the regulatory mechanisms of cardiac growth and coronary angiogenesis. Heineke et al. demonstrate that GATA4 acts as a stress-responsive transcription factor in murine cardiac myocytes that induces the expression of angiogenic growth factors (see the related article beginning on page 3198). Tirziu et al. show that enhanced coronary angiogenesis per se leads to hypertrophic growth of myocytes through a nitric oxide-dependent mechanism (see the related article beginning on page 3188). These studies, together with previous reports, suggest the existence of reciprocal signals between the myocardium and the vasculature that promote the growth of each other in a paracrine fashion.
引用
收藏
页码:3176 / 3179
页数:4
相关论文
共 27 条
[1]   Selective downregulation of VEGF-A165, VEGF-R1, and decreased capillary density in patients with dilative but not ischemic cardiomyopathy [J].
Abraham, D ;
Hofbauer, R ;
Schäfer, R ;
Blumer, R ;
Paulus, P ;
Miksovsky, A ;
Traxler, H ;
Kocher, A ;
Aharinejad, S .
CIRCULATION RESEARCH, 2000, 87 (08) :644-647
[2]   TSC2 regulates VEGF through mTOR-dependent and -independent pathways [J].
Brugarolas, JB ;
Vazquez, F ;
Reddy, A ;
Sellers, WR ;
Kaelin, WG .
CANCER CELL, 2003, 4 (02) :147-158
[3]   Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188 [J].
Carmeliet, P ;
Ng, YS ;
Nuyens, D ;
Theilmeier, G ;
Brusselmans, K ;
Cornelissen, I ;
Ehler, E ;
Kakkar, VV ;
Stalmans, I ;
Mattot, V ;
Perriard, JC ;
Dewerchin, M ;
Flameng, W ;
Nagy, A ;
Lupu, F ;
Moons, L ;
Collen, D ;
D'Amore, PA ;
Shima, DT .
NATURE MEDICINE, 1999, 5 (05) :495-502
[4]   Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA [J].
Charron, F ;
Tsimiklis, G ;
Areand, M ;
Robitaille, L ;
Liang, QR ;
Molkentin, JD ;
Meloche, S ;
Nemer, M .
GENES & DEVELOPMENT, 2001, 15 (20) :2702-2719
[5]   Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy [J].
Dor, Y ;
Djonov, V ;
Abramovitch, R ;
Itin, A ;
Fishman, GI ;
Carmeliet, P ;
Goelman, G ;
Keshet, E .
EMBO JOURNAL, 2002, 21 (08) :1939-1947
[6]   Is tissue mass regulated by vascular endothelial cells? Prostate as the first evidence [J].
Folkman, J .
ENDOCRINOLOGY, 1998, 139 (02) :441-442
[7]  
Folkman J., 2001, HARRISONS PRINCIPLES, V15th ed., P517
[8]   Testosterone stimulates angiogenesis and vascular regrowth in the ventral prostate in castrated adult rats [J].
Franck-Lissbrant, I ;
Häggström, S ;
Damber, JE ;
Bergh, A .
ENDOCRINOLOGY, 1998, 139 (02) :451-456
[9]   Vascular endothelial growth factor delays onset of failure in pressure-overload hypertrophy through matrix metalloproteinase activation and angiogenesis [J].
Friehs, I ;
Margossian, RE ;
Moran, AM ;
Hung, CD ;
Moses, MA ;
del Nido, PJ .
BASIC RESEARCH IN CARDIOLOGY, 2006, 101 (03) :204-213
[10]   Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart [J].
Friehs, Ingeborg ;
Barillas, Rodrigo ;
Vasilyev, Nikolay V. ;
Roy, Nathalie ;
McGowan, Francis X. ;
del Nido, Pedro J. .
CIRCULATION, 2006, 114 :I290-I295