Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes

被引:121
作者
Sims, Anne-Marie [1 ]
Shephard, Neil [2 ]
Carter, Kim [2 ]
Doan, Tracy [1 ]
Dowling, Alison [1 ]
Duncan, Emma L. [1 ]
Eisman, John [3 ]
Jones, Graeme [4 ]
Nicholson, Geoffrey [5 ]
Prince, Richard [6 ]
Seeman, Ego [7 ,8 ]
Thomas, Gethin [1 ]
Wass, John A. [9 ]
Brown, Matthew A. [1 ,10 ]
机构
[1] Diamantina Inst Canc Immunol & Metabol Med, Brisbane, Qld, Australia
[2] Western Australian Inst Med Res, Perth, WA, Australia
[3] Garvan Inst Med Res, Sydney, NSW, Australia
[4] Menzies Res Inst, Hobart, Tas, Australia
[5] Univ Melbourne, Barwon Hlth, Geelong, Vic, Australia
[6] Univ Western Australia, Sch Med & Pharmacol, Perth, WA, Australia
[7] Univ Melbourne, Dept Med, Austin Hlth, Melbourne, Vic, Australia
[8] Univ Melbourne, Dept Endocrinol, Austin Hlth, Melbourne, Vic, Australia
[9] Nuffield Orthopaed Ctr, Oxford, England
[10] Univ Oxford, Botnar Res Ctr, Oxford, England
关键词
single nucleotide polymorphism; association; BMD; Wnt;
D O I
10.1359/JBMR.071113
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Using a moderate-sized cohort selected with extreme BMD (n = 344; absolute value BMD, 1.5-4.0), significant association of several members of the Wnt signaling pathway with bone densitometry measures was shown. This confirms that extreme truncate selection is a powerful design for quantitative trait association studies of bone phenotypes. Introduction: Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate-sized extreme truncate selected cohort (absolute value BMD Z-scores = 1.5-4.0; n = 344). Materials and Methods: Ninety-six tag-single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r(2) > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty-four cases with either high or low BNID were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane-Armitage test for dichotomous variables or by linear regression for quantitative traits. Results: Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. Conclusions: This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome-wide studies of quantitative bone phenotypes relevant to osteoporosis.
引用
收藏
页码:499 / 506
页数:8
相关论文
共 39 条
[1]   The power to detect linkage disequilibrium with quantitative traits in selected samples [J].
Abecasis, GR ;
Cookson, WOC ;
Cardon, LR .
AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 68 (06) :1463-1474
[2]   Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease [J].
Balemans, W ;
Patel, N ;
Ebeling, M ;
Van Hul, E ;
Wuyts, W ;
Lacza, C ;
Dioszegi, M ;
Dikkers, FG ;
Hildering, P ;
Willems, PJ ;
Verheij, JBGM ;
Lindpaintner, K ;
Vickery, B ;
Foernzler, D ;
Van Hul, W .
JOURNAL OF MEDICAL GENETICS, 2002, 39 (02) :91-97
[3]   Haploview: analysis and visualization of LD and haplotype maps [J].
Barrett, JC ;
Fry, B ;
Maller, J ;
Daly, MJ .
BIOINFORMATICS, 2005, 21 (02) :263-265
[4]   Wnt signaling: An embarrassment of receptors [J].
Bejsovec, A .
CURRENT BIOLOGY, 2000, 10 (24) :R919-R922
[5]   The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice [J].
Bodine, PVN ;
Zhao, WG ;
Kharode, YP ;
Bex, FJ ;
Lambert, AJ ;
Goad, MB ;
Gaur, T ;
Stein, GS ;
Lian, JB ;
Komm, BS .
MOLECULAR ENDOCRINOLOGY, 2004, 18 (05) :1222-1237
[6]   LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women [J].
Bollerslev, J ;
Wilson, SG ;
Dick, IM ;
Islam, FMA ;
Ueland, T ;
Palmer, L ;
Devine, A ;
Prince, RL .
BONE, 2005, 36 (04) :599-606
[7]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[8]   Linkage disequilibrium mapping of quantitative-trait loci by selective genotyping [J].
Chen, ZH ;
Zheng, G ;
Ghosh, K ;
Li, ZH .
AMERICAN JOURNAL OF HUMAN GENETICS, 2005, 77 (04) :661-669
[9]   Evidence for a major gene for bone mineral density/content in human pedigrees identified via probands with extreme bone mineral density [J].
Deng, HW ;
Livshits, G ;
Yakovenko, K ;
Xu, FH ;
Conway, T ;
Davies, KM ;
Deng, H ;
Recker, RR .
ANNALS OF HUMAN GENETICS, 2002, 66 :61-74
[10]   Suggestive linkage of the parathyroid receptor type 1 to osteoporosis [J].
Duncan, EL ;
Brown, MA ;
Sinsheimer, J ;
Bell, J ;
Carr, AJ ;
Wordsworth, BP ;
Wass, JAH .
JOURNAL OF BONE AND MINERAL RESEARCH, 1999, 14 (12) :1993-1999