Analytic expression for the short-time rate of growth of the intermaterial contact perimeter in two-dimensional chaotic flows and Hamiltonian systems

被引:23
作者
Adrover, A
Giona, M
Muzzio, FJ
Cerbelli, S
Alvarez, MM
机构
[1] Univ Rome La Sapienza, Dipartimento Ingn Chim, Ctr Interuniv Sistemi Disordinati & Frattali Ingn, I-00184 Rome, Italy
[2] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08855 USA
[3] Univ Cagliari, Dipartimento Ingn Chim, I-09123 Cagliari, Italy
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 01期
关键词
D O I
10.1103/PhysRevE.58.447
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This article derives an analytic expression for the short- or intermediate-time behavior of the moment hierarchy of finite-time Liapunov exponents (stretching exponents) for two-dimensional periodically forced Hamiltonian systems and incompressible time-periodic fluid flows,As a result, the exponent characterizing the apparent short-time exponential growth of the intermaterial contact perimeter for two-dimensional systems can be predicted from the statistical properties of the invariant stretching distribution. The analysis as a whole is in fact grounded on an analytic expression for the high stretching tail of the invariant distribution of the finite-time Liapunov exponents. The asymptotic behavior of the moment hierarchy of the stretching field is also addressed in order to highlight the role of the dynamic heterogeneity accounted for by the variance of the stretching exponents.
引用
收藏
页码:447 / 458
页数:12
相关论文
共 38 条
[21]   THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS [J].
HENTSCHEL, HGE ;
PROCACCIA, I .
PHYSICA D, 1983, 8 (03) :435-444
[22]   LONG-TIME CORRELATIONS AND EXPANSION-RATE SPECTRA OF CHAOS IN HAMILTONIAN-SYSTEMS [J].
HORITA, T ;
HATA, H ;
ISHIZAKI, R ;
MORI, H .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (06) :1065-1070
[23]   CHAOS IN LOW-DIMENSIONAL HAMILTONIAN MAPS [J].
KANTZ, H ;
GRASSBERGER, P .
PHYSICS LETTERS A, 1987, 123 (09) :437-443
[24]   QUANTIFICATION OF MIXING IN APERIODIC CHAOTIC FLOWS [J].
LIU, M ;
MUZZIO, FJ ;
PESKIN, RL .
CHAOS SOLITONS & FRACTALS, 1994, 4 (06) :869-893
[25]   EQUIPARTITION THRESHOLD IN NONLINEAR LARGE HAMILTONIAN-SYSTEMS - THE FERMI-PASTA-ULAM MODEL [J].
LIVI, R ;
PETTINI, M ;
RUFFO, S ;
SPARPAGLIONE, M ;
VULPIANI, A .
PHYSICAL REVIEW A, 1985, 31 (02) :1039-1045
[26]   THE STATISTICS OF STRETCHING AND STIRRING IN CHAOTIC FLOWS [J].
MUZZIO, FJ ;
SWANSON, PD ;
OTTINO, JM .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (05) :822-834
[27]  
Oseledets V., 1968, Trans. Moscow Math. Soc, V19, P197
[28]   FRACTAL MEASURES OF PASSIVELY CONVECTED VECTOR-FIELDS AND SCALAR GRADIENTS IN CHAOTIC FLUID-FLOWS [J].
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW A, 1989, 39 (07) :3660-3671
[29]  
Ottino J. M., 1989, KINEMATICS MIXING ST
[30]   AN ANALYTICAL STUDY OF TRANSPORT, MIXING AND CHAOS IN AN UNSTEADY VORTICAL FLOW [J].
ROMKEDAR, V ;
LEONARD, A ;
WIGGINS, S .
JOURNAL OF FLUID MECHANICS, 1990, 214 :347-394