Kac-potential treatment of nonintegrable interactions

被引:26
作者
Vollmayr-Lee, BP [1 ]
Luijten, E
机构
[1] Bucknell Univ, Dept Phys, Lewisburg, PA 17837 USA
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevE.63.031108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider d-dimensional systems with nonintegrable, algebraically decaying pairwise interactions. It is shown that, upon the introduction of periodic boundary conditions and a long-distance cutoff in the interaction range, the bulk thermodynamics can be obtained rigorously by means of a Kac-potential treatment, leading to an exact, mean-field-like theory. This explains Various numerical results recently obtained for finite systems in the context of "nonextensive thermodynamics," and in passing exposes a strong regulator dependence not discussed in these studies. Our findings imply that, contrary to some claims, Boltzmann-Gibbs statistics are sufficient for a standard description of this class of nonintegrable interactions.
引用
收藏
页码:031108 / 031108
页数:8
相关论文
共 41 条
[1]   Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions [J].
Anteneodo, C ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5313-5316
[2]   ONE-DIMENSIONAL ORDER-DISORDER MODEL WHICH APPROACHES A SECOND-ORDER PHASE TRANSITION [J].
BAKER, GA .
PHYSICAL REVIEW, 1961, 122 (05) :1477-&
[3]   Thermodynamic limit for dipolar media [J].
Banerjee, S ;
Griffiths, RB ;
Widom, M .
JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (1-2) :109-141
[4]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[5]   Correlations in Ising chains with nonintegrable interactions [J].
Bergersen, B ;
Racz, Z ;
Xu, HJ .
PHYSICAL REVIEW E, 1995, 52 (06) :6031-6036
[6]   FINITE-SIZE EFFECTS IN THE APPROXIMATING HAMILTONIAN METHOD [J].
BRANKOV, JG .
PHYSICA A, 1990, 168 (03) :1035-1054
[7]   Long-range interactions and nonextensivity in ferromagnetic spin models [J].
Cannas, SA ;
Tamarit, FA .
PHYSICAL REVIEW B, 1996, 54 (18) :12661-12664
[8]   Phase diagram of a stochastic cellular automaton with long-range interactions [J].
Cannas, SA .
PHYSICA A, 1998, 258 (1-2) :32-44
[9]   Evidence of exactness of the mean-field theory in the nonextensive regime of long-range classical spin models [J].
Cannas, SA ;
de Magalhaes, ACN ;
Tamarit, FA .
PHYSICAL REVIEW B, 2000, 61 (17) :11521-11528
[10]   Critical temperature and nonextensivity in long-range interacting Lennard-Jones-like fluids [J].
Curilef, S ;
Tsallis, C .
PHYSICS LETTERS A, 1999, 264 (04) :270-275