Tree powers

被引:43
作者
Kearney, PE [1 ]
Corneil, DG
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada
[2] Univ Waterloo, Dept Comp Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jagm.1998.9999
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present the first polynomial algorithm for recognizing tree powers. A graph G is a tr ee power if there is a tree T and a positive integer k such that T-k congruent to G, where x and y are adjacent in T-k if and only if d(T) (x, y) less than or equal to k. We also show that a natural extension of tree power recognition is NP-complete, namely, given a graph G and a positive integer r, determine if there is a tree power within r edges of G. (C) 1998 Academic Press.
引用
收藏
页码:111 / 131
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 1987, CONGRES NUMER
[2]  
[Anonymous], 1968, J COMBIN THEORY
[3]   CHARACTERIZATIONS OF TOTALLY BALANCED MATRICES [J].
ANSTEE, RP ;
FARBER, M .
JOURNAL OF ALGORITHMS, 1984, 5 (02) :215-230
[4]   POWERS OF CHORDAL GRAPHS [J].
BALAKRISHNAN, R ;
PAULRAJA, P .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (OCT) :211-217
[5]   DISTANCES IN COCOMPARABILITY GRAPHS AND THEIR POWERS [J].
DAMASCHKE, P .
DISCRETE APPLIED MATHEMATICS, 1992, 35 (01) :67-72
[6]  
Escalante F., 1974, Journal of Combinatorial Theory, Series B, V16, P282, DOI 10.1016/0095-8956(74)90074-4
[7]   CHARACTERIZATIONS OF STRONGLY CHORDAL GRAPHS [J].
FARBER, M .
DISCRETE MATHEMATICS, 1983, 43 (2-3) :173-189
[8]  
Garey M. S., 1979, COMPUTERS INTRACTIBI
[9]   COMPLEXITY AND ALGORITHMS FOR REASONING ABOUT TIME - A GRAPH-THEORETIC APPROACH [J].
GOLUMBIC, MC ;
SHAMIR, R .
JOURNAL OF THE ACM, 1993, 40 (05) :1108-1133
[10]  
GOLUMBIC MC, 1993, IN PRESS ADV APPL MA