Excitotoxic injury to mitochondria isolated from cultured neurons

被引:62
作者
Kushnareva, YE [1 ]
Wiley, SE [1 ]
Ward, MW [1 ]
Andreyev, AY [1 ]
Murphy, AN [1 ]
机构
[1] MitoKor, San Diego, CA 92121 USA
关键词
D O I
10.1074/jbc.M503090200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Neuronal death in response to excitotoxic levels of glutamate is dependent upon mitochondrial Ca2+ accumulation and is associated with a drop in ATP levels and a loss in ionic homeostasis. Yet the mapping of temporal events in mitochondria subsequent to Ca2+ sequestration is incomplete. By isolating mitochondria from primary cultures, we discovered that glutamate treatment of cortical neurons for 10 min caused 44% inhibition of ADP-stimulated respiration, whereas the maximal rate of electron transport (uncoupler-stimulated respiration) was inhibited by similar to 10%. The Ca2+ load in mitochondria from glutamate-treated neurons was estimated to be 167 +/- 19 nmol/mg protein. The glutamate-induced Ca2+ load was less than the maximal Ca2+ uptake capacity of the mitochondria determined in vitro (363 +/- 35 nmol/mg protein). Comparatively, mitochondria isolated from cerebellar granule cells demonstrated a higher Ca2+ uptake capacity (686 +/- 71 nmol/mg protein) than the cortical mitochondria, and the glutamate- induced load of Ca2+ was a smaller percentage of the maximal Ca2(+) uptake capacity. Thus, this study indicated that Ca2+-induced impairment of mitochondrial ATP production is an early event in the excitotoxic cascade that may contribute to decreased cellular ATP and loss of ionic homeostasis that precede commitment to neuronal death.
引用
收藏
页码:28894 / 28902
页数:9
相关论文
共 80 条
[1]   Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation [J].
Alano, CC ;
Beutner, G ;
Dirksen, RT ;
Gross, RA ;
Sheu, SS .
JOURNAL OF NEUROCHEMISTRY, 2002, 80 (03) :531-538
[2]   Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion [J].
Almeida, A ;
Heales, SJR ;
Bolaños, JP ;
Medina, JM .
BRAIN RESEARCH, 1998, 790 (1-2) :209-216
[3]   A rapid method for the isolation of metabolically active mitochondria from rat neurons and astrocytes in primary culture [J].
Almeida, A ;
Medina, JM .
BRAIN RESEARCH PROTOCOLS, 1998, 2 (03) :209-214
[4]   THE REVERSIBLE CA-2+-INDUCED PERMEABILIZATION OF RAT-LIVER MITOCHONDRIA [J].
ALNASSER, I ;
CROMPTON, M .
BIOCHEMICAL JOURNAL, 1986, 239 (01) :19-29
[5]   Mitochondrial respiratory function and cell death in focal cerebral ischemia [J].
Anderson, MF ;
Sims, NR .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (03) :1189-1199
[6]   Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition [J].
Andreyev, AY ;
Fahy, B ;
Fiskum, G .
FEBS LETTERS, 1998, 439 (03) :373-376
[7]   Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells [J].
Atlante, A ;
Gagliardi, S ;
Minervini, GM ;
Marra, E ;
Passarella, S ;
Calissano, P .
NEUROREPORT, 1996, 7 (15-17) :2519-2523
[8]   Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death [J].
Atlante, A ;
Calissano, P ;
Bobba, A ;
Azzariti, A ;
Marra, E ;
Passarella, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :37159-37166
[9]   NMDA-evoked consumption and recovery of mitochondrially targeted aequorin suggests increased Ca2+ uptake by a subset of mitochondria in hippocampal neurons [J].
Baron, KT ;
Wang, GJ ;
Padua, RA ;
Campbell, C ;
Thayer, SA .
BRAIN RESEARCH, 2003, 993 (1-2) :124-132
[10]   Deranged neuronal calcium signaling and Huntington disease [J].
Bezprozvanny, I ;
Hayden, MR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 322 (04) :1310-1317