A unified framework for primal/dual quadrilateral subdivision schemes

被引:91
作者
Zorin, D
Schröder, P
机构
[1] NYU, Courant Inst Math Sci, Media Res Lab, New York, NY 10003 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
subdivision; quadrilateral; primal; dual; approximating; Doo-Sabin; Catmull-Clark; B-splines; averaging;
D O I
10.1016/S0167-8396(01)00040-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quadrilateral subdivision schemes come in primal and dual varieties, splitting faces or respectively vertices. The scheme of Catmull-Clark is an example of the former, while the Doo-Sabin scheme exemplifies the latter. In this paper we consider the construction of an increasing sequence of alternating primal/dual quadrilateral subdivision schemes based on a simple averaging approach. Beginning with a vertex split step we successively construct variants of Doo-Sabin and Catmull-Clark schemes followed by novel schemes generalizing B-splines of bidegree up to nine. We prove the schemes to be C-1 at irregular surface points, and analyze the behavior of the schemes as the number of averaging steps increases. We discuss a number of implementation issues common to all quadrilateral schemes. In particular we show how both primal and dual quadrilateral schemes can be implemented in the same code, opening up new possibilities for more flexible geometric modeling applications and p-versions of the Subdivision Element Method. Additionally we describe a simple algorithm for adaptive subdivision of dual schemes. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:429 / 454
页数:26
相关论文
共 25 条
[1]  
Biermann H, 2000, COMP GRAPH, P113, DOI 10.1145/344779.344841
[2]   RECURSIVELY GENERATED B-SPLINE SURFACES ON ARBITRARY TOPOLOGICAL MESHES [J].
CATMULL, E ;
CLARK, J .
COMPUTER-AIDED DESIGN, 1978, 10 (06) :350-355
[3]  
CAVARETTA AS, MEM AM MATH SOC, V93
[4]  
Cirak F, 2000, INT J NUMER METH ENG, V47, P2039, DOI 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO
[5]  
2-1
[6]   DISCRETE B-SPLINES AND SUBDIVISION TECHNIQUES IN COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER-GRAPHICS [J].
COHEN, E ;
LYCHE, T ;
RIESENFELD, R .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 14 (02) :87-111
[7]   BEHAVIOR OF RECURSIVE DIVISION SURFACES NEAR EXTRAORDINARY POINTS [J].
DOO, D ;
SABIN, M .
COMPUTER-AIDED DESIGN, 1978, 10 (06) :356-360
[8]   A BUTTERFLY SUBDIVISION SCHEME FOR SURFACE INTERPOLATION WITH TENSION CONTROL [J].
DYN, N ;
LEVIN, D ;
GREGORY, JA .
ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (02) :160-169
[9]   Edge and vertex insertion for a class of C1 subdivision surfaces [J].
Habib, A ;
Warren, J .
COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (04) :223-247
[10]  
Jury E. I., 1964, Theory and Application of the Z-Transform Method