A unified framework for primal/dual quadrilateral subdivision schemes

被引:91
作者
Zorin, D
Schröder, P
机构
[1] NYU, Courant Inst Math Sci, Media Res Lab, New York, NY 10003 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
subdivision; quadrilateral; primal; dual; approximating; Doo-Sabin; Catmull-Clark; B-splines; averaging;
D O I
10.1016/S0167-8396(01)00040-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quadrilateral subdivision schemes come in primal and dual varieties, splitting faces or respectively vertices. The scheme of Catmull-Clark is an example of the former, while the Doo-Sabin scheme exemplifies the latter. In this paper we consider the construction of an increasing sequence of alternating primal/dual quadrilateral subdivision schemes based on a simple averaging approach. Beginning with a vertex split step we successively construct variants of Doo-Sabin and Catmull-Clark schemes followed by novel schemes generalizing B-splines of bidegree up to nine. We prove the schemes to be C-1 at irregular surface points, and analyze the behavior of the schemes as the number of averaging steps increases. We discuss a number of implementation issues common to all quadrilateral schemes. In particular we show how both primal and dual quadrilateral schemes can be implemented in the same code, opening up new possibilities for more flexible geometric modeling applications and p-versions of the Subdivision Element Method. Additionally we describe a simple algorithm for adaptive subdivision of dual schemes. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:429 / 454
页数:26
相关论文
共 25 条
[21]  
WARREN J, 2001, IN PRESS SUBDIVISION
[22]  
XU X, 1999, EUR 99 P
[23]   A method for analysis of C1-continuity of subdivision surfaces [J].
Zorin, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (05) :1677-1708
[24]   Smoothness of stationary subdivision on irregular meshes [J].
Zorin, D .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (03) :359-397
[25]  
Zorin D, 1996, P SIGGRAPH 96, P189