Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes

被引:65
作者
Bhati, Mugdha [1 ]
Lee, Christopher [1 ]
Nancarrow, Amy L. [1 ]
Lee, Mihwa [1 ]
Craig, Vanessa J. [1 ]
Bach, Ingolf [2 ,3 ]
Guss, J. Mitchell [1 ]
Mackay, Joel P. [1 ]
Matthews, Jacqueline M. [1 ]
机构
[1] Univ Sydney, Sch Mol & Microbial Biosci, Darlinghurst, NSW 2006, Australia
[2] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA USA
[3] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA USA
关键词
cell specification; competitive binding; LIM code; LIM homeodomain proteins; protein complexes;
D O I
10.1038/emboj.2008.123
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1LBD). Although the LIM interaction domain of Ldb1 (Ldb1LID) and Isl1LBD share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1LBD mimics Ldb1LID. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.
引用
收藏
页码:2018 / 2029
页数:12
相关论文
共 43 条
[1]   The LIM domain: regulation by association [J].
Bach, I .
MECHANISMS OF DEVELOPMENT, 2000, 91 (1-2) :5-17
[2]   Crystallization of an Lhx3-Isl1 complex [J].
Bhati, Mugdha ;
Lee, Mihwa ;
Nancarrow, Amy Louise ;
Bach, Ingolf ;
Guss, J. Mitchell ;
Matthews, Jacqueline Mary .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2008, 64 :297-299
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[5]   Tandem LIM domains provide synergistic binding in the LMO4:Ldb1 complex [J].
Deane, JE ;
Ryan, DP ;
Sunde, M ;
Maher, MJ ;
Guss, JM ;
Visvader, JE ;
Matthews, JM .
EMBO JOURNAL, 2004, 23 (18) :3589-3598
[6]   Structural basis for the recognition of ldb1 by the N-terminal LIM domains of LMO2 and LMO4 [J].
Deane, JE ;
Mackay, JP ;
Kwan, AHY ;
Sum, EYM ;
Visvader, JE ;
Matthews, JM .
EMBO JOURNAL, 2003, 22 (09) :2224-2233
[7]   Design, production and characterization of FLIN2 and FLIN4:: the engineering of intramolecular ldb1:LMO complexes [J].
Deane, JE ;
Sum, E ;
Mackay, JP ;
Lindeman, GJ ;
Visvader, JE ;
Matthews, JM .
PROTEIN ENGINEERING, 2001, 14 (07) :493-499
[8]   Intrinsically unstructured proteins and their functions [J].
Dyson, HJ ;
Wright, PE .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (03) :197-208
[9]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[10]  
FERSHT ARF, 1998, STRUCTURE MECH PROTE, P513