Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes

被引:65
作者
Bhati, Mugdha [1 ]
Lee, Christopher [1 ]
Nancarrow, Amy L. [1 ]
Lee, Mihwa [1 ]
Craig, Vanessa J. [1 ]
Bach, Ingolf [2 ,3 ]
Guss, J. Mitchell [1 ]
Mackay, Joel P. [1 ]
Matthews, Jacqueline M. [1 ]
机构
[1] Univ Sydney, Sch Mol & Microbial Biosci, Darlinghurst, NSW 2006, Australia
[2] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA USA
[3] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA USA
关键词
cell specification; competitive binding; LIM code; LIM homeodomain proteins; protein complexes;
D O I
10.1038/emboj.2008.123
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1LBD). Although the LIM interaction domain of Ldb1 (Ldb1LID) and Isl1LBD share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1LBD mimics Ldb1LID. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.
引用
收藏
页码:2018 / 2029
页数:12
相关论文
共 43 条
[21]   1H, 15N and 13C assignments of an intramolecular Lhx3:ldb1 complex [J].
Lee, C ;
Nancarrow, AL ;
Bach, I ;
Mackay, JP ;
Matthews, JM .
JOURNAL OF BIOMOLECULAR NMR, 2005, 33 (03) :198-198
[22]   Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors [J].
Lee, SK ;
Pfaff, SL .
NEURON, 2003, 38 (05) :731-745
[23]   Structure validation by Cα geometry:: φ,ψ and Cβ deviation [J].
Lovell, SC ;
Davis, IW ;
Adrendall, WB ;
de Bakker, PIW ;
Word, JM ;
Prisant, MG ;
Richardson, JS ;
Richardson, DC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 50 (03) :437-450
[24]   LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins [J].
Matthews, JM ;
Visvader, JE .
EMBO REPORTS, 2003, 4 (12) :1132-1137
[25]   Refinement of macromolecular structures by the maximum-likelihood method [J].
Murshudov, GN ;
Vagin, AA ;
Dodson, EJ .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1997, 53 :240-255
[26]   Peptides mediating interaction networks: new leads at last [J].
Neduva, Victor ;
Russell, Robert B. .
CURRENT OPINION IN BIOTECHNOLOGY, 2006, 17 (05) :465-471
[27]   Automated NOESY interpretation with ambiguous distance restraints: The refined NMR solution structure of the pleckstrin homology domain from beta-spectrin [J].
Nilges, M ;
Macias, MJ ;
ODonoghue, SI ;
Oschkinat, H .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 269 (03) :408-422
[28]   Processing of X-ray diffraction data collected in oscillation mode [J].
Otwinowski, Z ;
Minor, W .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :307-326
[29]   Structure of the cysteine-rich intestinal protein, CRIP [J].
PerezAlvarado, GC ;
Kosa, JL ;
Louis, HA ;
Beckerle, MC ;
Winge, DR ;
Summers, MF .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (01) :153-174
[30]   Automated protein model building combined with iterative structure refinement [J].
Perrakis, A ;
Morris, R ;
Lamzin, VS .
NATURE STRUCTURAL BIOLOGY, 1999, 6 (05) :458-463