Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing

被引:1065
作者
Kuzum, Duygu [1 ]
Jeyasingh, Rakesh G. D. [1 ]
Lee, Byoungil [1 ]
Wong, H. -S. Philip [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Ctr Integrated Syst, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Brain-inspired computing; nanoelectronics; phase change materials; spike timing dependent plasticity; synapse; TIMING-DEPENDENT PLASTICITY; SYNAPTIC MODIFICATION; SPIKE; POTENTIATION; COMPETITION; NEURONS; MEMORY; STDP;
D O I
10.1021/nl201040y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.
引用
收藏
页码:2179 / 2186
页数:8
相关论文
共 55 条
[1]  
Ahn SJ, 2005, 2005 Symposium on VLSI Technology, Digest of Technical Papers, P98
[2]   An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse [J].
Alibart, Fabien ;
Pleutin, Stephane ;
Guerin, David ;
Novembre, Christophe ;
Lenfant, Stephane ;
Lmimouni, Kamal ;
Gamrat, Christian ;
Vuillaume, Dominique .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (02) :330-337
[3]  
[Anonymous], 2009, IEEE SPECTRUM NOV
[4]  
[Anonymous], 2008, P IEEE, V96, P2
[5]  
[Anonymous], 2003, IEEE INT EL DEV M IE
[6]  
[Anonymous], IEEE INT EL DEV M WA
[7]  
[Anonymous], BAA0828 DARPADSO
[8]  
Arthur J., 2006, ADV NEURAL INFORM PR, P75
[9]  
Bez R, 2009, INT EL DEVICES MEET, P79
[10]   Synaptic modification by correlated activity: Hebb's postulate revisited [J].
Bi, GQ ;
Poo, MM .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :139-166