Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing

被引:1065
作者
Kuzum, Duygu [1 ]
Jeyasingh, Rakesh G. D. [1 ]
Lee, Byoungil [1 ]
Wong, H. -S. Philip [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Ctr Integrated Syst, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Brain-inspired computing; nanoelectronics; phase change materials; spike timing dependent plasticity; synapse; TIMING-DEPENDENT PLASTICITY; SYNAPTIC MODIFICATION; SPIKE; POTENTIATION; COMPETITION; NEURONS; MEMORY; STDP;
D O I
10.1021/nl201040y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.
引用
收藏
页码:2179 / 2186
页数:8
相关论文
共 55 条
[21]   Contribution of individual spikes in burst-induced long-term synaptic modification [J].
Froemke, RC ;
Tsay, IA ;
Raad, M ;
Long, JD ;
Dan, Y .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 95 (03) :1620-1629
[22]   Spike-timing-dependent synaptic modification induced by natural spike trains [J].
Froemke, RC ;
Dan, Y .
NATURE, 2002, 416 (6879) :433-438
[23]  
Ha Y. H., 2003, S VLSI TECHN, P175, DOI [10.1109/VLSIT.2003.1221142, DOI 10.1016/J.MATLET.2009.11.001]
[24]   LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise [J].
Hayashi, Hatsuo ;
Igarashi, Jun .
COGNITIVE NEURODYNAMICS, 2009, 3 (02) :119-130
[25]  
Hebb D.O., 1949, ORG BEHAV NEUROPSYCH
[26]   Analysis of phase distribution in phase-change nonvolatile memories [J].
Ielmini, D ;
Lacaita, AL ;
Pirovano, A ;
Pellizzer, F ;
Bez, R .
IEEE ELECTRON DEVICE LETTERS, 2004, 25 (07) :507-509
[27]   A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity [J].
Indiveri, G ;
Chicca, E ;
Douglas, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (01) :211-221
[28]   Nanoscale Memristor Device as Synapse in Neuromorphic Systems [J].
Jo, Sung Hyun ;
Chang, Ting ;
Ebong, Idongesit ;
Bhadviya, Bhavitavya B. ;
Mazumder, Pinaki ;
Lu, Wei .
NANO LETTERS, 2010, 10 (04) :1297-1301
[29]   A Carbon Nanotube Cortical Neuron with Spike-Timing-Dependent Plasticity [J].
Joshi, Jonathan ;
Parker, Alice C. ;
Hsu, Chih-Chieh .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :1651-1654
[30]   Low-cost and nanoscale non-volatile memory concept for future silicon chips [J].
Lankhorst, MHR ;
Ketelaars, BWSMM ;
Wolters, RAM .
NATURE MATERIALS, 2005, 4 (04) :347-352