Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach

被引:230
作者
Ayres, Chantal E. [2 ]
Jha, B. Shekhar [1 ]
Meredith, Hannah [1 ]
Bowman, James R. [1 ]
Bowlin, Gary L. [2 ]
Henderson, Scott C. [1 ]
Simpson, David G. [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Anat & Neurobiol, Richmond, VA 23116 USA
[2] Virginia Commonwealth Univ, Dept Biomed Engn, Richmond, VA 23116 USA
关键词
2D fast Fourier transform; fiber alignment; electrospinning; scaffold; data imaging;
D O I
10.1163/156856208784089643
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study we describe how to use a two-dimensional fast Fourier transform (2D FFT) approach to measure fiber alignment in electrospun materials. This image processing function can be coupled with a variety of imaging modalities to assign an objective numerical value to scaffold anisotropy. A data image of an electrospun scaffold is composed of pixels that depict the spatial organization of the constituent fibers. The 2D FFT function converts this spatial information into a mathematically defined frequency domain that maps the rate at which pixel intensities change across the original data image. This output image also contains quantitative information concerning the orientation of objects in a data image. We discuss the theory and practice of using the frequency plot of the 2D FFT function to measure relative scaffold anisotropy and identify the principal axis of fiber orientation. We note that specific degrees of scaffold anisotropy may represent a critical design feature in the fabrication of tissues that will be subjected to well-defined uniaxial mechanical loads. This structural property may also represent a source of guidance cues that can be exploited to regulate cell phenotype.
引用
收藏
页码:603 / 621
页数:19
相关论文
共 28 条
[1]   Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform [J].
Ayres, Chantal ;
Bowlin, Gary L. ;
Henderson, Scott C. ;
Taylor, Leander ;
Shultz, Jackie ;
Alexander, John ;
Telemeco, Todd A. ;
Simpson, David G. .
BIOMATERIALS, 2006, 27 (32) :5524-5534
[2]   Incremental changes in anisotropy induce incremental changes in the material properties of electrospun scaffolds [J].
Ayres, Chantal E. ;
Bowlin, Gary L. ;
Pizinger, Ryan ;
Taylor, Leander T. ;
Keen, Christopher A. ;
Simpson, David G. .
ACTA BIOMATERIALIA, 2007, 3 (05) :651-661
[3]   Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol [J].
Barnes, Catherine P. ;
Pemble, Charles W. ;
Brand, David D. ;
Simpson, David G. ;
Bowlin, Gary L. .
TISSUE ENGINEERING, 2007, 13 (07) :1593-1605
[4]   Electrospinning polydioxanone for biomedical applications [J].
Boland, ED ;
Coleman, BD ;
Barnes, CP ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
ACTA BIOMATERIALIA, 2005, 1 (01) :115-123
[5]   Electrospinning collagen and elastin: Preliminary vascular tissue engineering [J].
Boland, ED ;
Matthews, JA ;
Pawlowski, KJ ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2004, 9 :1422-1432
[6]   Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning [J].
Boland, ED ;
Wnek, GE ;
Simpson, DG ;
Pawlowski, KJ ;
Bowlin, GL .
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 2001, 38 (12) :1231-1243
[7]  
CHOW W, 2007, NEURON GLIA IN PRESS
[8]   Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy [J].
Courtney, T ;
Sacks, MS ;
Stankus, J ;
Guan, J ;
Wagner, WR .
BIOMATERIALS, 2006, 27 (19) :3631-3638
[9]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[10]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8