Use of models in detection and attribution of climate change

被引:233
作者
Hegerl, Gabriele [1 ]
Zwiers, Francis [2 ]
机构
[1] Univ Edinburgh, Grant Inst, Sch Geosci, Edinburgh, Midlothian, Scotland
[2] Univ Victoria, Pacific Climate Impacts Consortium, Victoria, BC, Canada
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
MEAN SURFACE-TEMPERATURE; GREENHOUSE-GAS; DATA SET; PART I; PRECIPITATION; 20TH-CENTURY; SOLAR; UNCERTAINTY; CONSTRAINTS; VARIABILITY;
D O I
10.1002/wcc.121
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Most detection and attribution studies use climate models to determine both the expected 'fingerprint' of climate change and the uncertainty in the estimated magnitude of this fingerprint in observations, given the climate variability. This review discusses the role of models in detection and attribution, the associated uncertainties, and the robustness of results. Studies that use observations only make substantial assumptions to separate the components of observed changes due to radiative forcing from those due to internal climate variability. Results from observation-only studies are broadly consistent with those from fingerprint studies. Fingerprint studies evaluate the extent to which patterns of response to external forcing (fingerprints) from climate model simulations explain observed climate change in observations. Fingerprints are based on climate models of various complexities, from energy balance models to full earth system models. Statistical approaches range from simple comparisons of observations with model simulations to multi-regression methods that estimate the contribution of several forcings to observed change using a noise-reducing metric. Multi-model methods can address model uncertainties to some extent and we discuss how remaining uncertainties can be overcome. The increasing focus on detecting and attributing regional climate change and impacts presents both opportunities and challenges. Challenges arise because internal variability is larger on smaller scales, and regionally important forcings, such as from aerosols or land-use change, are often uncertain. Nevertheless, if regional climate change can be linked to external forcing, the results can be used to provide constraints on regional climate projections. (C) 2011 John Wiley & Sons, Ltd. WIREs Clim Change 2011 2 570-591 DOI: 10.1002/wcc.121
引用
收藏
页码:570 / 591
页数:22
相关论文
共 123 条
[91]   Towards the detection and attribution of an anthropogenic effect on climate [J].
Santer, BD ;
Taylor, KE ;
Wigley, TML ;
Penner, JE ;
Jones, PD ;
Cubasch, U .
CLIMATE DYNAMICS, 1995, 12 (02) :77-100
[92]   Phenomenological solar contribution to the 1900-2000 global surface warming [J].
Scafetta, N ;
West, BJ .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (05)
[93]  
Schneider T, 2001, J CLIMATE, V14, P249, DOI 10.1175/1520-0442(2001)014<0249:LDOTCC>2.0.CO
[94]  
2
[95]   Optimal filtering for Bayesian detection and attribution of climate change [J].
Schnur, R ;
Hasselmann, KI .
CLIMATE DYNAMICS, 2005, 24 (01) :45-55
[96]   Design and analysis of climate model experiments for the efficient estimation of anthropogenic signals [J].
Sexton, DMH ;
Grubb, H ;
Shine, KP ;
Folland, CK .
JOURNAL OF CLIMATE, 2003, 16 (09) :1320-1336
[97]   DISTINGUISHING THE ROLES OF NATURAL AND ANTHROPOGENICALLY FORCED DECADAL CLIMATE VARIABILITY Implications for Prediction [J].
Solomon, Amy ;
Goddard, Lisa ;
Kumar, Arun ;
Carton, James ;
Deser, Clara ;
Fukumori, Ichiro ;
Greene, Arthur M. ;
Hegerl, Gabriele ;
Kirtman, Ben ;
Kushnir, Yochanan ;
Newman, Matthew ;
Smith, Doug ;
Vimont, Dan ;
Delworth, Tom ;
Meehl, Gerald A. ;
Stockdale, Timothy .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2011, 92 (02) :141-156
[98]   Uncertainty in predictions of the climate response to rising levels of greenhouse gases [J].
Stainforth, DA ;
Aina, T ;
Christensen, C ;
Collins, M ;
Faull, N ;
Frame, DJ ;
Kettleborough, JA ;
Knight, S ;
Martin, A ;
Murphy, JM ;
Piani, C ;
Sexton, D ;
Smith, LA ;
Spicer, RA ;
Thorpe, AJ ;
Allen, MR .
NATURE, 2005, 433 (7024) :403-406
[99]   Attribution of regional-scale temperature changes to anthropogenic and natural causes [J].
Stott, PA .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (14)
[100]   Origins and estimates of uncertainty in predictions of twenty-first century temperature rise [J].
Stott, PA ;
Kettleborough, JA .
NATURE, 2002, 416 (6882) :723-726