On the absence of homogeneous scalar unitary cellular automata

被引:86
作者
Meyer, DA
机构
[1] Project in Geometry and Physics, Department of Mathematics, University of California/San Diego, San Diego
关键词
quantum cellular automaton; quantum lattice gas; unitarity; No-go theorem;
D O I
10.1016/S0375-9601(96)00745-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Failure to find homogeneous scalar unitary cellular automata (CA) in one dimension led to consideration of only ''approximately unitary'' CA - which motivated our recent proof of a No-go Lemma in one dimension. In this note we extend the one dimensional result to prove the absence of nontrivial homogeneous scalar unitary CA on Euclidean lattices in any dimension.
引用
收藏
页码:337 / 340
页数:4
相关论文
共 25 条
[1]   WEYL, DIRAC, AND MAXWELL EQUATIONS ON A LATTICE AS UNITARY CELLULAR-AUTOMATA [J].
BIALYNICKIBIRULA, I .
PHYSICAL REVIEW D, 1994, 49 (12) :6920-6927
[2]  
BOGHOSIAN BM, 1996, BUCCS960401
[3]  
DURR C, 1996, QUANTPH9604007
[4]  
Durr C., 1996, LECT NOTES COMPUTER, V1046, P281
[5]  
FANDAM W, 1996, UNIVERSAL QUANTUM CE
[6]   NONLOCAL COMPUTATION IN QUANTUM CELLULAR-AUTOMATA [J].
FUSSY, S ;
GROSSING, G ;
SCHWABL, H ;
SCRINZI, A .
PHYSICAL REVIEW A, 1993, 48 (05) :3470-3477
[7]   FROM EQUILIBRIUM SPIN MODELS TO PROBABILISTIC CELLULAR AUTOMATA [J].
GEORGES, A ;
LEDOUSSAL, P .
JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (3-4) :1011-1064
[8]   A CONSERVATION LAW IN QUANTUM CELLULAR AUTOMATA [J].
GROSSING, G ;
ZEILINGER, A .
PHYSICA D, 1988, 31 (01) :70-77
[9]  
Grossing G., 1988, COMPLEX SYST, V2, P197
[10]  
Hartle JB, 1993, DIRECTIONS GEN RELAT, V1, P104