Short term load forecasting using multiple linear regression

被引:128
作者
Amral, N. [1 ]
Oezveren, C. S. [1 ]
King, D. [1 ]
机构
[1] Univ Abertay Dundee, Mphil Res Programme, Dundee DD1 1HG, Scotland
来源
2007 42ND INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE, VOLS 1-3 | 2007年
关键词
multiple linear regression; polynomial terms;
D O I
10.1109/UPEC.2007.4469121
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper we present an investigation for the short term (up 24 hours) load forecasting of the demand for the South Sulewesi's (Sulewesi Island-Indonesia) Power System, using a Multiple Linear Regression (MLR) method. After a brief analytical discussion of the technique, the usage of polynomial terms and the steps to compose the MLR model will be explained. Report on implementation of MLR algorithm using commercially available tool such as Microsoft EXCEL(TM) will also be discussed. As a case study, historical data consisting of hourly load demand and temperatures of South Sulawesi electrical system will be used, to forecast the short term load. The results will be presented and analysed potential for improvement using alternative methods is also discussed.
引用
收藏
页码:1192 / 1198
页数:7
相关论文
共 10 条
[1]  
Bowerman B.L., 1993, Forecasting and Time Series
[2]   SHORT-TERM LOAD FORECASTING USING GENERAL EXPONENTIAL SMOOTHING [J].
CHRISTIAANSE, WR .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1971, PA90 (02) :900-+
[3]   A NEW APPROACH TO STATISTICAL FORECASTING OF DAILY PEAK POWER DEMAND [J].
GOH, TN ;
ONG, HL ;
LEE, YO .
ELECTRIC POWER SYSTEMS RESEARCH, 1986, 10 (02) :145-148
[4]  
GROSS G, 1987, P IEEE DEC
[5]  
Gupta P. C., 1971, IEEE T POWER APP SYS, VPAS-90
[6]   ANALYSIS AND EVALUATION OF 5 SHORT-TERM LOAD FORECASTING TECHNIQUES [J].
MOGHRAM, I ;
RAHMAN, S .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1989, 4 (04) :1484-1491
[7]   A REGRESSION-BASED APPROACH TO SHORT-TERM SYSTEM LOAD FORECASTING [J].
PAPALEXOPOULOS, AD ;
HESTERBERG, TC .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1990, 5 (04) :1535-1547
[8]   ELECTRIC-LOAD FORECASTING USING AN ARTIFICIAL NEURAL NETWORK [J].
PARK, DC ;
ELSHARKAWI, MA ;
MARKS, RJ ;
ATLAS, LE ;
DAMBORG, MJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (02) :442-449
[9]  
Ragsdale C.T, 1995, SPREADSHEET MODELING
[10]  
THOMSON RP, 1976, IEEE T POWER APP SYS, V90, P385