The SMOS Soil Moisture Retrieval Algorithm

被引:819
作者
Kerr, Yann H. [1 ]
Waldteufel, Philippe [2 ]
Richaume, Philippe [3 ]
Wigneron, Jean Pierre [4 ]
Ferrazzoli, Paolo [5 ]
Mahmoodi, Ali [6 ]
Al Bitar, Ahmad [3 ]
Cabot, Francois [3 ]
Gruhier, Claire [3 ]
Juglea, Silvia Enache [3 ]
Leroux, Delphine [3 ]
Mialon, Arnaud [3 ]
Delwart, Steven [7 ]
机构
[1] Univ Toulouse, CESBIO, CNES, CNRS,IRD, F-31401 Toulouse 9, France
[2] IPSL LATMOS, Paris, France
[3] CESBIO, F-31401 Toulouse, France
[4] INRA EPHYSE, F-33140 Villenave Dornon, France
[5] Tor Vergata Univ, I-00133 Rome, Italy
[6] Array Syst Comp Inc, Toronto, ON M3J 3H7, Canada
[7] ESA ESRIN, I-00044 Frascati, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2012年 / 50卷 / 05期
关键词
Cal/Val; model; SMOS; soil moisture; retrievals; vegetation opacity; L-BAND EMISSION; PASSIVE MICROWAVE MEASUREMENTS; LAND-SURFACE PARAMETERS; L-MEB MODEL; BRIGHTNESS TEMPERATURES; DIELECTRIC-PROPERTIES; VEGETATION CANOPY; GLOBAL SIMULATION; SMMR DATA; WET SOIL;
D O I
10.1109/TGRS.2012.2184548
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Soil Moisture and Ocean Salinity (SMOS) mission is European Space Agency (ESA's) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint program between ESA Centre National d'Etudes Spatiales (CNES) and Centro para el Desarrollo Tecnologico Industrial. SMOS carries a single payload, an L-Band 2-D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere, and hence the instrument probes the earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. The goal of the level 2 algorithm is thus to deliver global soil moisture (SM) maps with a desired accuracy of 0.04 m3/m3. To reach this goal, a retrieval algorithm was developed and implemented in the ground segment which processes level 1 to level 2 data. Level 1 consists mainly of angular brightness temperatures (TB), while level 2 consists of geophysical products in swath mode, i.e., as acquired by the sensor during a half orbit from pole to pole. In this context, a group of institutes prepared the SMOS algorithm theoretical basis documents to be used to produce the operational algorithm. The principle of the SM retrieval algorithm is based on an iterative approach which aims at minimizing a cost function. The main component of the cost function is given by the sum of the squared weighted differences between measured and modeled TB data, for a variety of incidence angles. The algorithm finds the best set of the parameters, e. g., SM and vegetation characteristics, which drive the direct TB model and minimizes the cost function. The end user Level 2 SM product contains SM, vegetation opacity, and estimated dielectric constant of any surface, TB computed at 42.5 degrees, flags and quality indices, and other parameters of interest. This paper gives an overview of the algorithm, discusses the caveats, and provides a glimpse of the Cal Val exercises.
引用
收藏
页码:1384 / 1403
页数:20
相关论文
共 89 条
[21]   Simulating L-band emission of forests in view of future satellite applications [J].
Ferrazzoli, P ;
Guerriero, L ;
Wigneron, JP .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (12) :2700-2708
[22]   A field experiment on microwave forest radiometry:: L-band signal behaviour for varying conditions of surface wetness [J].
Grant, J. P. ;
Wigneron, J.-P. ;
Van de Griend, A. A. ;
Kruszewski, A. ;
Sobjaerg, S. Schmidl ;
Skou, N. .
REMOTE SENSING OF ENVIRONMENT, 2007, 109 (01) :10-19
[23]   Calibration of the L-MEB model over a coniferous and a deciduous forest [J].
Grant, Jennifer P. ;
Saleh-Contell, Kauzar ;
Wigneron, Jean-Pierre ;
Guglielmetti, Massimo ;
Kerr, Yann H. ;
Schwank, Mike ;
Skou, Niels ;
de Griend, Adriaan A. Van .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03) :808-818
[24]   FOSMEX:: Forest soil moisture experiments with microwave radiometry [J].
Guglielmetti, Massimo ;
Schwank, Mike ;
Maetzler, Christian ;
Oberdoerster, Christoph ;
Vanderborght, Jan ;
Fluehler, Hannes .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03) :727-735
[25]   MICROWAVE DIELECTRIC BEHAVIOR OF WET SOIL .1. EMPIRICAL-MODELS AND EXPERIMENTAL-OBSERVATIONS [J].
HALLIKAINEN, MT ;
ULABY, FT ;
DOBSON, MC ;
ELRAYES, MA ;
WU, LK .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (01) :25-34
[27]   A new parameterization of the effective temperature for L band radiometry -: art. no. L07405 [J].
Holmes, TRH ;
de Rosnay, P ;
de Jeu, R ;
Wigneron, RJP ;
Kerr, Y ;
Calvet, JC ;
Escorihuela, MJ ;
Saleh, K ;
Lemaître, F .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (07)
[28]  
Hornbuckle BK, 2003, INT GEOSCI REMOTE SE, P333
[29]   Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products [J].
Jackson, Thomas J. ;
Cosh, Michael H. ;
Bindlish, Rajat ;
Starks, Patrick J. ;
Bosch, David D. ;
Seyfried, Mark ;
Goodrich, David C. ;
Moran, Mary Susan ;
Du, Jinyang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (12) :4256-4272
[30]   VEGETATION EFFECTS ON THE MICROWAVE EMISSION OF SOILS [J].
JACKSON, TJ ;
SCHMUGGE, TJ .
REMOTE SENSING OF ENVIRONMENT, 1991, 36 (03) :203-212