Acrolein impairs ATP binding cassette transporter A1-dependent cholesterol export from cells through site-specific modification of apolipoprotein A-I

被引:101
作者
Shao, BH
Fu, XY
McDonald, TO
Green, PS
Uchida, K
O'Brien, KD
Oram, JF
Heinecke, JW
机构
[1] Univ Washington, Div Metab Endocrinol & Nutr, Dept Med, Seattle, WA 98195 USA
[2] Nagoya Univ, Grad Sch Bioagr Sci, Lab Food & Biodynam, Nagoya, Aichi 4648601, Japan
关键词
D O I
10.1074/jbc.M508169200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acrolein is a highly reactive alpha,beta-unsaturated aldehyde, but the factors that control its reactions with nucleophilic groups on proteins remain poorly understood. Lipid peroxidation and threonine oxidation by myeloperoxidase are potential sources of acrolein during inflammation. Because both pathways are implicated in atherogenesis and high density lipoprotein (HDL) is anti-atherogenic, we investigated the possibility that acrolein might target the major protein of HDL, apolipoprotein A-I (apoA-I), for modification. Tandem mass spectrometric analysis demonstrated that lysine 226, located near the center of helix 10 in apoA-I, was the major site modified by acrolein. Importantly, this region plays a critical role in the cellular interactions and ability of apoA-I to transport lipid. Indeed, we found that conversion of Lys-226 to N-epsilon-(3-methylpyridinium) lysine by acrolein associated quantitatively with decreased cholesterol efflux from cells via the ATP-binding cassette transporter A1 pathway. In the crystal structure of truncated apoA-I, Glu-234 lies adjacent to Lys-226, suggesting that negatively charged residues might direct the modification of specific lysine residues in proteins. Finally, immunohistochemical studies with a monoclonal antibody revealed co-localization of apoA-I with acrolein adducts in human atherosclerotic lesions. Our observations suggest that acrolein might interfere with normal reverse cholesterol transport by HDL by modifying specific sites in apoA-I. Thus, acrolein might contribute to atherogenesis by impairing cholesterol removal from the artery wall.
引用
收藏
页码:36386 / 36396
页数:11
相关论文
共 55 条
[1]   The myeloperoxidase system of human phagocytes generates Nε-(carboxymethyl)lysine on proteins:: a mechanism for producing advances glycation end products at sites of inflammation [J].
Anderson, MM ;
Requena, JR ;
Crowley, JR ;
Thorpe, SR ;
Heinecke, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (01) :103-113
[2]   Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein - A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation [J].
Anderson, MM ;
Hazen, SL ;
Hsu, FF ;
Heinecke, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (03) :424-432
[3]   Role of oxidative stress in diabetic complications - A new perspective on an old paradigm [J].
Baynes, JW ;
Thorpe, SR .
DIABETES, 1999, 48 (01) :1-9
[4]   The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport [J].
Bergt, C ;
Pennathur, S ;
Fu, XY ;
Byun, J ;
O'Brien, K ;
McDonald, TO ;
Singh, P ;
Anantharamaiah, GM ;
Chait, A ;
Brunzell, J ;
Geary, RL ;
Oram, JF ;
Heinecke, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (35) :13032-13037
[5]   Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein [J].
Bergt, C ;
Fu, XY ;
Huq, NP ;
Kao, J ;
Heinecke, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (09) :7856-7866
[6]   Oxidized HDL - The paradox-idation of lipoproteins [J].
Bergt, C ;
Oram, JF ;
Heinecke, JW .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2003, 23 (09) :1488-1490
[7]   Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation [J].
Borhani, DW ;
Rogers, DP ;
Engler, JA ;
Brouillette, CG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (23) :12291-12296
[8]   HIGH-DENSITY-LIPOPROTEIN IS THE MAJOR CARRIER OF LIPID HYDROPEROXIDES IN HUMAN BLOOD-PLASMA FROM FASTING DONORS [J].
BOWRY, VW ;
STANLEY, KK ;
STOCKER, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10316-10320
[9]   STRUCTURAL MODELS OF HUMAN APOLIPOPROTEIN-A-I [J].
BROUILLETTE, CG ;
ANANTHARAMAIAH, GM .
BIOCHIMICA ET BIOPHYSICA ACTA-LIPIDS AND LIPID METABOLISM, 1995, 1256 (02) :103-129
[10]   The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux -: Amino acid residues 220-231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo [J].
Chroni, A ;
Liu, T ;
Gorshkova, I ;
Kan, HY ;
Uehara, Y ;
von Eckardstein, A ;
Zannis, VI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (09) :6719-6730