Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system

被引:262
作者
Krishnan, Jaya [1 ,2 ]
Danzer, Carsten [1 ,2 ]
Simka, Tatiana [1 ,2 ]
Ukropec, Josef [3 ]
Walter, Katharina Manuela [1 ,2 ]
Kumpf, Susann [1 ,2 ]
Mirtschink, Peter [1 ,2 ]
Ukropcova, Barbara [3 ]
Gasperikova, Daniela [3 ]
Pedrazzini, Thierry [4 ]
Krek, Wilhelm [1 ,2 ]
机构
[1] ETH, Inst Cell Biol, CH-8093 Zurich, Switzerland
[2] ETH, Competence Ctr Syst Physiol & Metab Dis, CH-8093 Zurich, Switzerland
[3] Slovak Acad Sci, Inst Expt Endocrinol, Bratislava, Slovakia
[4] Univ Lausanne, Sch Med, Dept Med, CH-1011 Lausanne, Switzerland
关键词
Hif1; alpha; Sirt2; adipocytes; obesity; diabetes; metabolism; INDUCIBLE FACTOR 1-ALPHA; ADIPOSE-TISSUE; INSULIN-RESISTANCE; VISCERAL ADIPOSITY; HYPOXIA; SIRT2; MICE; DEACETYLASE; METABOLISM; PATHWAY;
D O I
10.1101/gad.180406.111
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1 alpha (HIF1 alpha). Here we report that, in mice, Hif1 alpha activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1 alpha is linked to its capacity to suppress beta-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPAR gamma coactivator 1 alpha (Pgc1 alpha) and expression of beta-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1 alpha and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1 alpha regulatory axis, Hif1 alpha negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 38 条
[31]   SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction [J].
Wang, Fei ;
Nguyen, Margaret ;
Qin, F. Xiao-Feng ;
Tong, Qiang .
AGING CELL, 2007, 6 (04) :505-514
[32]   Regulation of endocytosis via the oxygen-sensing pathway [J].
Wang, Yi ;
Roche, Olga ;
Yan, Mathew S. ;
Finak, Greg ;
Evans, Andrew J. ;
Metcalf, Julie L. ;
Hast, Bridgid E. ;
Hanna, Sara C. ;
Wondergem, Bill ;
Furge, Kyle A. ;
Irwin, Meredith S. ;
Kim, William Y. ;
Teh, Bin T. ;
Grinstein, Sergio ;
Park, Morag ;
Marsden, Philip A. ;
Ohh, Michael .
NATURE MEDICINE, 2009, 15 (03) :319-324
[33]   Cellular Metabolic Stress: Considering How Cells Respond to Nutrient Excess [J].
Wellen, Kathryn E. ;
Thompson, Craig B. .
MOLECULAR CELL, 2010, 40 (02) :323-332
[34]   Cellular hypoxia and adipose tissue dysfunction in obesity [J].
Wood, I. Stuart ;
de Heredia, Fatima Perez ;
Wang, Bohan ;
Trayhurn, Paul .
PROCEEDINGS OF THE NUTRITION SOCIETY, 2009, 68 (04) :370-377
[35]   Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 [J].
Wu, ZD ;
Puigserver, P ;
Andersson, U ;
Zhang, CY ;
Adelmant, G ;
Mootha, V ;
Troy, A ;
Cinti, S ;
Lowell, B ;
Scarpulla, RC ;
Spiegelman, BM .
CELL, 1999, 98 (01) :115-124
[36]   Emerging role of adipose tissue hypoxia in obesity and insulin resistance [J].
Ye, J. .
INTERNATIONAL JOURNAL OF OBESITY, 2009, 33 (01) :54-66
[37]   Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice [J].
Ye, Jianping ;
Gao, Zhanguo ;
Yin, Jun ;
He, Qing .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2007, 293 (04) :E1118-E1128
[38]   Adipose Tissue-specific Inhibition of Hypoxia-inducible Factor 1α Induces Obesity and Glucose Intolerance by Impeding Energy Expenditure in Mice [J].
Zhang, Xinmei ;
Lam, Karen S. L. ;
Ye, Hongying ;
Chung, Sookja K. ;
Zhou, Mingyan ;
Wang, Yu ;
Xu, Aimin .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (43) :32869-32877