The CHEASE code for toroidal MHD equilibria

被引:336
作者
Lutjens, H [1 ]
Bondeson, A [1 ]
Sauter, O [1 ]
机构
[1] ECOLE POLYTECH FED LAUSANNE,EURATOM ASSOC,CTR RECH PHYS PLASMAS,CH-1015 LAUSANNE,SWITZERLAND
关键词
plasma physics; magnetohydrodynamics (MHD); equilibrium; Grad-Shafranov equation; Cubic Hermite finite elements; mapping to magnetic flux coordinates; ballooning modes; local interchange modes; bootstrap current;
D O I
10.1016/0010-4655(96)00046-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The CHEASE code (Cubic Hermite Element Axisymmetric Static Equilibrium) solves the Grad-Shafranov equation for toroidal MHD equilibria using a Hermite bicubic finite element discretization with pressure, current profiles and plasma boundaries specified by analytical forms or sets of experimental data points. Moreover, CHEASE allows the automatic generation of pressure profiles marginally stable to ballooning modes or with a prescribed fraction of bootstrap current. The code provides equilibrium quantities for several stability and global wave propagation codes.
引用
收藏
页码:219 / 260
页数:42
相关论文
共 36 条
[1]   RESISTIVE TOROIDAL STABILITY OF INTERNAL KINK MODES IN CIRCULAR AND SHAPED TOKAMAKS [J].
BONDESON, A ;
VLAD, G ;
LUTJENS, H .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :1889-1900
[2]   TUNABLE INTEGRATION SCHEME FOR THE FINITE-ELEMENT METHOD [J].
BONDESON, A ;
FU, GY .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 66 (2-3) :167-176
[3]   SHEAR, PERIODICITY, AND PLASMA BALLOONING MODES [J].
CONNOR, JW ;
HASTIE, RJ ;
TAYLOR, JB .
PHYSICAL REVIEW LETTERS, 1978, 40 (06) :396-399
[4]   AN ITERATIVE METRIC METHOD FOR SOLVING THE INVERSE TOKAMAK EQUILIBRIUM PROBLEM [J].
DELUCIA, J ;
JARDIN, SC ;
TODD, AMM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (02) :183-204
[5]  
Forsythe G. E., 1977, COMPUTER METHODS MAT, P70
[6]  
Freidberg J. P., 1987, IDEAL MAGNETOHYDRODY
[7]   RESISTIVE INSTABILITIES IN GENERAL TOROIDAL PLASMA CONFIGURATIONS [J].
GLASSER, AH ;
GREENE, JM ;
JOHNSON, JL .
PHYSICS OF FLUIDS, 1975, 18 (07) :875-888
[8]  
Grad H., 1958, 2 P INT C PEAC US, V31, P190
[9]  
GRAEUB W, 1958, GRUND MATH WISS, V97, P157
[10]  
Grimm R., 1976, Methods in Computational Physics, V16, P253