Novel ARF/p53-independent senescence pathways in cancer repression

被引:23
作者
Chan, Chia-Hsin [2 ]
Gao, Yuan [1 ,2 ]
Moten, Asad [2 ]
Lin, Hui-Kuan [1 ,2 ]
机构
[1] Univ Texas Houston, Grad Sch Biomed Sci, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2011年 / 89卷 / 09期
基金
美国国家卫生研究院;
关键词
Skp2; p53; Cellular senescence; Cancer therapy; ONCOGENE-INDUCED SENESCENCE; P53-DEPENDENT CELLULAR SENESCENCE; DEMETHYLASE JMJD3 CONTRIBUTES; TUMORIGENESIS IN-VIVO; HUMAN TUMOR-CELLS; DNA-DAMAGE; PREMATURE SENESCENCE; GROWTH ARREST; HUMAN FIBROBLASTS; P53; FUNCTION;
D O I
10.1007/s00109-011-0766-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cellular senescence, which can be induced by various stimuli, is a stress response that manifests as irreversible cell cycle arrest. Recent studies have revealed that cellular senescence can serve as a critical barrier for cancer development. Induction of cellular senescence by oncogenic insults, such as Ras overexpression or by inactivation of PTEN tumor suppressor, triggers an ARF/p53-dependent tumor-suppressive effect which can significantly restrict cancer progression. Given the important role of the ARF/p53 pathway in cellular senescence and tumor suppression, drugs that stabilize p53 expression have been developed and tested in clinical trials. However, a major hurdle for p53 targeting in cancer treatment arises from the frequent deficiency or mutation of ARF or p53 in human cancers, which, in turn, profoundly compromises their tumor-suppressive ability. Recent discoveries of novel regulators involved in ARF/p53-independent cellular senescence not only reveal novel paradigms for cellular senescence but also provide alternative approaches for cancer therapy.
引用
收藏
页码:857 / 867
页数:11
相关论文
共 128 条
[41]   Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14ARF tumor suppressor [J].
Dimri, GP ;
Itahana, K ;
Acosta, M ;
Campisi, J .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (01) :273-285
[42]   A BIOMARKER THAT IDENTIFIES SENESCENT HUMAN-CELLS IN CULTURE AND IN AGING SKIN IN-VIVO [J].
DIMRI, GP ;
LEE, XH ;
BASILE, G ;
ACOSTA, M ;
SCOTT, C ;
ROSKELLEY, C ;
MEDRANO, EE ;
LINSKENS, M ;
RUBELJ, I ;
PEREIRASMITH, O ;
PEACOCKE, M ;
CAMPISI, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9363-9367
[43]  
Drobnjak M, 2003, CLIN CANCER RES, V9, P2613
[44]   Cellular senescence: hot or what? [J].
Evan, Gerard I. ;
di Fagagna, Fabrizio d'Adda .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2009, 19 (01) :25-31
[45]   Comparative analysis of p73 and p53 regulation and effector functions [J].
Fang, L ;
Lee, SW ;
Aaronson, SA .
JOURNAL OF CELL BIOLOGY, 1999, 147 (04) :823-830
[46]   Short telomeres limit tumor progression in vivo by inducing senescence [J].
Feldser, David M. ;
Greider, Carol W. .
CANCER CELL, 2007, 11 (05) :461-469
[47]   Oncogenic ras and p53 cooperate to induce cellular senescence [J].
Ferbeyre, G ;
de Stanchina, E ;
Lin, AW ;
Querido, E ;
McCurrach, ME ;
Hannon, GJ ;
Lowe, SW .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (10) :3497-3508
[48]   Coordinated Regulation of Cell Cycle Transcripts by p53-inducible microRNAs, miR-192 and miR-215 [J].
Georges, Sara A. ;
Biery, Matthew C. ;
Kim, Soo-yeon ;
Schelter, Janell M. ;
Guo, Jane ;
Chang, Aaron N. ;
Jackson, Aimee L. ;
Carleton, Michael O. ;
Linsley, Peter S. ;
Cleary, Michele A. ;
Chau, B. Nelson .
CANCER RESEARCH, 2008, 68 (24) :10105-10112
[49]   REINITIATION OF CELLULAR DNA-SYNTHESIS IN BRDU-SELECTED NONDIVIDING SENESCENT WI-38 CELLS BY SIMIAN VIRUS-40 INFECTION [J].
GORMAN, SD ;
CRISTOFALO, VJ .
JOURNAL OF CELLULAR PHYSIOLOGY, 1985, 125 (01) :122-126
[50]   Werner syndrome protein limits MYC-induced cellular senescence [J].
Grandori, C ;
Wu, KJ ;
Fernandez, P ;
Ngouenet, C ;
Grim, J ;
Clurman, BE ;
Moser, MJ ;
Oshima, J ;
Russell, DW ;
Swisshelm, K ;
Frank, S ;
Amati, B ;
Dalla-Favera, R ;
Mormat, RJ .
GENES & DEVELOPMENT, 2003, 17 (13) :1569-1574