Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers

被引:118
作者
Sargeant, Timothy D. [1 ]
Rao, Mukti S. [1 ]
Koh, Chung-Yan [2 ]
Stupp, Samuel I. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Med, Evanston, IL 60208 USA
关键词
peptide amphiphile nanofibers; self-assembly; nickel-titanium; APTES; biofunctionalization; covalent attachment;
D O I
10.1016/j.biomaterials.2007.11.002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium (NiTi) shape memory alloy in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM techniques. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1085 / 1098
页数:14
相关论文
共 61 条
[1]   Osteoinduction, osteoconduction and osseointegration [J].
Albrektsson, T ;
Johansson, C .
EUROPEAN SPINE JOURNAL, 2001, 10 (Suppl 2) :S96-S101
[2]   Endothelial progenitor cell capture by stents coated with antibody against CD34 - The HEALING-FIM (healthy endothelial accelerated lining inhibits neointimal growth-first in man) registry [J].
Aoki, J ;
Serruys, PW ;
van Beusekom, H ;
Ong, ATL ;
McFadden, EP ;
Sianos, G ;
van der Giessen, WJ ;
Regar, E ;
de Feyter, PJ ;
Davis, HR ;
Rowland, S ;
Kutryk, MJB .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2005, 45 (10) :1574-1579
[3]   Biocompatibility and hemocompatibility of surface-modified NiTi alloys [J].
Armitage, DA ;
Parker, TL ;
Grant, DM .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 66A (01) :129-137
[4]   Porous titanium-nickel for intervertebral fusion in a sheep model: Part 1. Histomorphometric and radiological analysis [J].
Assad, M ;
Jarzem, P ;
Leroux, MA ;
Coillard, C ;
Chernyshov, AV ;
Charette, S ;
Rivard, CH .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2003, 64B (02) :107-120
[5]   Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD [J].
Balasundaram, G ;
Sato, M ;
Webster, TJ .
BIOMATERIALS, 2006, 27 (14) :2798-2805
[6]   Inhibition of PMN apoptosis after adherence to dip-coated calcium phosphate surfaces on a NiTi shape memory alloy [J].
Bogdanski, D ;
Esenwein, SA ;
Prymak, O ;
Epple, M ;
Muhr, G ;
Köller, M .
BIOMATERIALS, 2004, 25 (19) :4627-4632
[7]   Role of material surfaces in regulating bone and cartilage cell response [J].
Boyan, BD ;
Hummert, TW ;
Dean, DD ;
Schwartz, Z .
BIOMATERIALS, 1996, 17 (02) :137-146
[8]   DISSOCIATIVE CHEMISORPTION AND LOCALIZED OXIDATION-STATES AT TITANIUM SURFACES [J].
CARLEY, AF ;
ROBERTS, JC ;
ROBERTS, MW .
SURFACE SCIENCE, 1990, 225 (03) :L39-L41
[9]   The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression [J].
Chou, YF ;
Huang, WB ;
Dunn, JCY ;
Miller, TA ;
Wu, BM .
BIOMATERIALS, 2005, 26 (03) :285-295
[10]   Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale [J].
Chung, TW ;
Liu, DZ ;
Wang, SY ;
Wang, SS .
BIOMATERIALS, 2003, 24 (25) :4655-4661