共 35 条
Inflammatory mechanisms in diabetes:: lessons from the β-cell
被引:53
作者:
Hohmeier, HE
Tran, VV
Chen, G
Gasa, R
Newgard, CB
[1
]
机构:
[1] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol,LSRC 351, Sarah W Stedman Nutr & Metab Ctr,DUMC 3813, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Med, Div Metab Endocrinol & Nutr, Durham, NC 27710 USA
[3] Univ Texas, SW Med Ctr, Touchstone Ctr Diabet Res, Dept Biochem, Dallas, TX USA
[4] Univ Texas, SW Med Ctr, Touchstone Ctr Diabet Res, Biomed Engn Program, Dallas, TX USA
[5] Univ Calif San Francisco, Dept Internal Med, San Francisco, CA 94143 USA
关键词:
IL-1;
beta;
TNF-alpha;
IFN-gamma;
D O I:
10.1038/sj.ijo.0802493
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Inflammation plays an important role in the destruction of pancreatic islet beta-cells that leads to type I diabetes. This involves infiltration of T-cells and macrophages into the islets and local production of inflammatory cytokines such as interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. Our laboratory has developed several strategies for protecting beta-cells against oxidative stress and cytokine-induced cytotoxicity. These include a cytokine selection strategy that results in cell lines that are resistant to the combined effects of IL-1beta+IFN-gamma. More recently, we have combined the cytokine selection procedure with overexpression of the antiapoptotic gene bcl-2, resulting in cell lines with greater resistance to oxidative stress and cytokine-induced damage than achieved with either procedure alone. This article summarizes this work and the remarkably divergent mechanisms by which protection is achieved in the different model systems. We also discuss the potential relevance of insights gained from these approaches for enhancing islet cell survival and function in both major forms of diabetes.
引用
收藏
页码:S12 / S16
页数:5
相关论文