The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells

被引:246
作者
Kuroda, J
Nakagawa, K
Yamasaki, T
Nakamura, K
Takeya, R
Kuribayashi, F
Imajoh-Ohmi, S
Igarashi, K
Shibata, Y
Sueishi, K
Sumimoto, H
机构
[1] Kyushu Univ, Med Inst Bioregulat, Higashi Ku, Fukuoka 8128582, Japan
[2] Kyushu Univ, Grad Sch Med Sci, Dept Pathol, Fukuoka 8128582, Japan
[3] Kyushu Univ, Grad Sch Med Sci, Dept Dev Mol Anat, Fukuoka 8128582, Japan
[4] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Inst Med Sci, Tokyo 1088639, Japan
[6] Hiroshima Univ, Grad Sch Biomed Sci, Dept Biomed Chem, Hiroshima 7348551, Japan
关键词
D O I
10.1111/j.1365-2443.2005.00907.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The superoxide-producing NAD(P)H oxidase Nox4 was initially identified as an enzyme that is highly expressed in the kidney and is possibly involved in oxygen sensing and cellular senescence. Although the oxidase is also abundant in vascular endothelial cells, its role remains to be elucidated. Here we show that Nox4 preferentially localizes to the nucleus of human umbilical vein endothelial cells (HUVECs), by immunocytochemistry and immunoelectron microscopy using three kinds of affinity-purified antibodies raised against distinct immunogens from human Nox4. Silencing of Nox4 by RNA interference (RNAi) abrogates nuclear signals given with the antibodies, confirming the nuclear localization of Nox4. The nuclear fraction of HUVECs exhibits an NAD(P)H-dependent superoxide-producing activity in a manner dependent on Nox4, which activity can be enhanced upon cell stimulation with phorbol 12-myristate 13-acetate. This stimulant also facilitates gene expression as estimated in the present transfection assay of HUVECs using a reporter regulated by the Maf-recognition element MARE, a DNA sequence that constitutes a part of oxidative stress response. Both basal and stimulated transcriptional activities are impaired by RNAi-mediated Nox4 silencing. Thus Nox4 appears to produce superoxide in the nucleus of HUVECs, thereby regulating gene expression via a mechanism for oxidative stress response.
引用
收藏
页码:1139 / 1151
页数:13
相关论文
共 47 条
[11]   Immunohistochemical expression of vascular endothelial growth factor vascular permeability factor in atherosclerotic intimas of human coronary arteries [J].
Chen, YX ;
Nakashima, Y ;
Tanaka, K ;
Shiraishi, S ;
Nakagawa, K ;
Sueishi, K .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1999, 19 (01) :131-139
[12]   Nox3 regulation by NOXO1, p47phox, and p67phox [J].
Cheng, GJ ;
Ritsick, D ;
Lambeth, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (33) :34250-34255
[13]   Homologs of gp91phox:: cloning and tissue expression of Nox3, Nox4, and Nox5 [J].
Cheng, GJ ;
Cao, ZH ;
Xu, XX ;
Van Meir, EG ;
Lambeth, JD .
GENE, 2001, 269 (1-2) :131-140
[14]   Free radicals in the physiological control of cell function [J].
Dröge, W .
PHYSIOLOGICAL REVIEWS, 2002, 82 (01) :47-95
[15]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[16]   Inhibitors of NADH-ubiquinone reductase: an overview [J].
Esposti, MD .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1364 (02) :222-235
[17]   Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment [J].
Etoh, T ;
Inoguchi, T ;
Kakimoto, M ;
Sonoda, N ;
Kobayashi, K ;
Kuroda, J ;
Sumimoto, H ;
Nawata, H .
DIABETOLOGIA, 2003, 46 (10) :1428-1437
[18]   The Nox family of NAD(P)H oxidases: Host defense and beyond [J].
Geiszt, M ;
Leto, TL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (50) :51715-51718
[19]   Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells [J].
Geiszt, M ;
Lekstrom, K ;
Witta, J ;
Leto, TL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (22) :20006-20012
[20]   Identification of Renox, an NAD(P)H oxidase in kidney [J].
Geiszt, M ;
Kopp, JB ;
Várnai, P ;
Leto, TL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :8010-8014