An argyrodite sulfide- based superionic conductor synthesized by a liquid- phase technique with tetrahydrofuran and ethanol

被引:142
作者
Yubuchi, So [1 ]
Uematsu, Miwa [1 ]
Hotehama, Chie [1 ]
Sakuda, Atsushi [1 ]
Hayashi, Akitoshi [1 ]
Tatsumisago, Masahiro [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Dept Appl Chem, Naka Ku, 1-1 Gakuen Cha, Sakai, Osaka 5998531, Japan
基金
日本科学技术振兴机构;
关键词
LITHIUM SECONDARY BATTERIES; SOLID-ELECTROLYTE; NA3PS4; ELECTROLYTE; IONIC-CONDUCTIVITY; THIN-FILM; LICOO2; LI6PS5X;
D O I
10.1039/c8ta09477b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfide-based solid electrolytes with halide elements are essential components of advanced all-solid-state batteries. Argyrodite crystals are viable candidates as solid electrolytes for realizing all-solid-state batteries. However, a simple and effective route for the synthesis of these solid electrolytes is required. Herein, argyrodite Li6PS5Br superionic conductors were synthesized from a homogeneous solution by a liquid-phase technique. The Li6PS5Br solid electrolyte was prepared in a shorter synthesis time of one day using tetrahydrofuran and ethanol as compared with the solid-phase method. More importantly, of all the sulfide-based solid electrolytes prepared by liquid-phase techniques, Li6PS5Br showed the highest ionic conductivity of 3.1 mS cm(-1) at 25 degrees C. The obtained particle size of 1 m is suitable for application in all-solid-state cells. Moreover, coating electrode active materials with the solid electrolyte using the precursor solution led to a large contact area between the electrode and electrolyte and improved the cell performance. In addition, infiltrating a porous electrode with the precursor solution of the solid electrolyte is suitable for forming homogeneous composite electrodes to improve the cell performance. The all-solid-state cell using the Li6PS5Br fine powder with a high conductivity of 1 mS cm(-1) or more exhibited a reversible capacity of 150 mA h g(-1). This technique is effective for the industrial production of solid electrolytes and is applicable to all-solid-state batteries.
引用
收藏
页码:558 / 566
页数:9
相关论文
共 39 条
[1]   Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application [J].
Boulineau, Sylvain ;
Courty, Matthieu ;
Tarascon, Jean-Marie ;
Viallet, Virginie .
SOLID STATE IONICS, 2012, 221 :1-5
[2]   Coatable Li4SnS4 Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries [J].
Choi, Young Eun ;
Park, Kern Ho ;
Kim, Dong Hyeon ;
Oh, Dae Yang ;
Kwak, Hi Ram ;
Lee, Young-Gi ;
Jung, Yoon Seok .
CHEMSUSCHEM, 2017, 10 (12) :2605-2611
[3]   Li6PS5X:: A class of crystalline Li-rich solids with an unusually high Li+ mobility [J].
Deiseroth, Hans-Joerg ;
Kong, Shiao-Tong ;
Eckert, Hellmut ;
Vannahme, Julia ;
Reiner, Christof ;
Zaiss, Torsten ;
Schlosser, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (04) :755-758
[4]   Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements [J].
Deiseroth, Hans-Joerg ;
Maier, Joachim ;
Weichert, Katja ;
Nickel, Vera ;
Kong, Shiao-Tong ;
Reiner, Christof .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2011, 637 (10) :1287-1294
[5]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[6]   Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries [J].
Hayashi, Akitoshi ;
Sakuda, Atsushi ;
Tatsumisago, Masahiro .
FRONTIERS IN ENERGY RESEARCH, 2016, 4
[7]   A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent [J].
Ito, Seitaro ;
Nakakita, Moeka ;
Aihara, Yuichi ;
Uehara, Takahiro ;
Machida, Nobuya .
JOURNAL OF POWER SOURCES, 2014, 271 :342-345
[8]   Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries [J].
Ito, Yusuke ;
Yamakawa, Shunsuke ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (21) :10658-10668
[9]   Three-dimensional visualization in powder diffraction [J].
Izumi, Fujio ;
Momma, Koichi .
APPLIED CRYSTALLOGRAPHY XX, 2007, 130 :15-20
[10]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/NMAT3066, 10.1038/nmat3066]