Genome-Wide Meta-Analysis of Joint Tests for Genetic and Gene-Environment Interaction Effects

被引:59
作者
Aschard, Hugues [1 ]
Hancock, Dana B. [2 ]
London, Stephanie J. [2 ]
Kraft, Peter
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Program Mol & Genet Epidemiol, Boston, MA 02115 USA
[2] NIEHS, Epidemiol Branch, NIH, Dept Hlth & Human Serv, Res Triangle Pk, NC 27709 USA
关键词
Gene-environment interaction; Genome-wide scan; Meta-analysis; Case-control association analysis; Complex disease; ASSOCIATION; INDEPENDENCE;
D O I
10.1159/000323318
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: There is growing interest in the study of gene-environment interactions in the context of genome-wide association studies (GWASs). These studies will likely require meta-analytic approaches to have sufficient power. Methods: We describe an approach for meta-analysis of a joint test for genetic main effects and gene-environment interaction effects. Using simulation studies based on a meta-analysis of five studies (total n = 10,161), we compare the power of this test to the meta-analysis of marginal test of genetic association and the meta-analysis of standard 1 d.f. interaction tests across a broad range of genetic main effects and gene-environment interaction effects. Results: We show that the joint meta-analysis is valid and can be more powerful than classical meta-analytic approaches, with a potential gain of power over 50% compared to the marginal test. The standard interaction test had less than 1% power in almost all the situations we considered. We also show that regardless of the test used, sample sizes far exceeding those of a typical individual GWAS will be needed to reliably detect genes with subtle gene-environment interaction patterns. Conclusion: The joint meta-analysis is an attractive approach to discover markers which may have been missed by initial GWASs focusing on marginal marker-trait associations. Copyright (C) 2011 S. Karger AG, Basel
引用
收藏
页码:292 / 300
页数:9
相关论文
共 22 条
[1]   ProbABEL package for genome-wide association analysis of imputed data [J].
Aulchenko, Yurii S. ;
Struchalin, Maksim V. ;
van Duijn, Cornelia M. .
BMC BIOINFORMATICS, 2010, 11
[2]   Exploiting gene-environment independence in family-based case-control studies: Increased power for detecting associations, interactions and joint effects [J].
Chatterjee, N ;
Kalaylioglu, Z ;
Carroll, RJ .
GENETIC EPIDEMIOLOGY, 2005, 28 (02) :138-156
[3]  
CORNELIS MC, GENE ENV IN IN PRESS
[4]   Practical aspects of imputation-driven meta-analysis of genome-wide association studies [J].
de Bakker, Paul I. W. ;
Ferreira, Manuel A. R. ;
Jia, Xiaoming ;
Neale, Benjamin M. ;
Raychaudhuri, Soumya ;
Voight, Benjamin F. .
HUMAN MOLECULAR GENETICS, 2008, 17 :R122-R128
[5]   Interactions in Epidemiology: Relevance, Identification, and Estimation [J].
Greenland, Sander .
EPIDEMIOLOGY, 2009, 20 (01) :14-17
[6]   A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer [J].
Hunter, David J. ;
Kraft, Peter ;
Jacobs, Kevin B. ;
Cox, David G. ;
Yeager, Meredith ;
Hankinson, Susan E. ;
Wacholder, Sholom ;
Wang, Zhaoming ;
Welch, Robert ;
Hutchinson, Amy ;
Wang, Junwen ;
Yu, Kai ;
Chatterjee, Nilanjan ;
Orr, Nick ;
Willett, Walter C. ;
Colditz, Graham A. ;
Ziegler, Regina G. ;
Berg, Christine D. ;
Buys, Saundra S. ;
McCarty, Catherine A. ;
Feigelson, Heather Spencer ;
Calle, Eugenia E. ;
Thun, Michael J. ;
Hayes, Richard B. ;
Tucker, Margaret ;
Gerhard, Daniela S. ;
Fraumeni, Joseph F., Jr. ;
Hoover, Robert N. ;
Thomas, Gilles ;
Chanock, Stephen J. .
NATURE GENETICS, 2007, 39 (07) :870-874
[7]   Invited Commentary: From Genome-Wide Association Studies to Gene-Environment-Wide Interaction Studies-025EFChallenges and Opportunities [J].
Khoury, Muin J. ;
Wacholder, Sholom .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 169 (02) :227-230
[8]  
Kraft P., 2010, Human genome epidemiology, P165
[9]   Exploiting gene-environment interaction to detect genetic associations [J].
Kraft, Peter ;
Yen, Yu-Chun ;
Stram, Daniel O. ;
Morrison, John ;
Gauderman, W. James .
HUMAN HEREDITY, 2007, 63 (02) :111-119
[10]  
Li Y., 2006, AM J HUM GENET, VS79, P2290