Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test

被引:1715
作者
Wu, Michael C. [2 ]
Lee, Seunggeun [1 ]
Cai, Tianxi [1 ]
Li, Yun [2 ,3 ]
Boehnke, Michael [4 ,5 ]
Lin, Xihong [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
GENOME-WIDE ASSOCIATION; COMMON DISEASES; GENETIC PATHWAY; MIXED MODELS; TRAITS; SNPS; STRATEGIES; REGRESSION;
D O I
10.1016/j.ajhg.2011.05.029
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Sequencing studies are increasingly being conducted to identify rare variants associated with complex traits. The limited power of classical single-marker association analysis for rare variants poses a central challenge in such studies. We propose the sequence kernel association test (SKAT), a supervised, flexible, computationally efficient regression method to test for association between genetic variants (common and rare) in a region and a continuous or dichotomous trait while easily adjusting for covariates. As a score-based variance-component test, SKAT can quickly calculate p values analytically by fitting the null model containing only the covariates, and so can easily be applied to genome-wide data. Using SKAT to analyze a genome-wide sequencing study of 1000 individuals, by segmenting the whole genome into 30 kb regions, requires only 7 hr on a laptop. Through analysis of simulated data across a wide range of practical scenarios and triglyceride data from the Dallas Heart Study, we show that SKAT can substantially outperform several alternative rare-variant association tests. We also provide analytic power and sample-size calculations to help design candidate-gene, whole-exome, and whole-genome sequence association studies.
引用
收藏
页码:82 / 93
页数:12
相关论文
共 39 条
[1]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[2]   Next-generation DNA sequencing techniques [J].
Ansorge, Wilhelm J. .
NEW BIOTECHNOLOGY, 2009, 25 (04) :195-203
[3]   Rare Variant Association Analysis Methods for Complex Traits [J].
Asimit, Jennifer ;
Zeggini, Eleftheria .
ANNUAL REVIEW OF GENETICS, VOL 44, 2010, 44 :293-308
[4]   Accurate detection and genotyping of SNPs utilizing population sequencing data [J].
Bansal, Vikas ;
Harismendy, Olivier ;
Tewhey, Ryan ;
Murray, Sarah S. ;
Schork, Nicholas J. ;
Topol, Eric J. ;
Frazer, Kelly A. .
GENOME RESEARCH, 2010, 20 (04) :537-545
[5]   Challenges in the identification and use of rare disease-associated predisposition variants [J].
Carvajal-Carmona, Luis G. .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2010, 20 (03) :277-281
[6]  
Christianini N., 2000, INTRO SUPPORT VECTOR, P189
[7]  
Davies R. B., 1980, J ROYAL STAT SOC C, V29, P323, DOI DOI 10.2307/2346911
[8]   Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods [J].
Duchesne, Pierre ;
De Micheaux, Pierre Lafaye .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) :858-862
[9]   VIEWPOINT Missing heritability and strategies for finding the underlying causes of complex disease [J].
Eichler, Evan E. ;
Flint, Jonathan ;
Gibson, Greg ;
Kong, Augustine ;
Leal, Suzanne M. ;
Moore, Jason H. ;
Nadeau, Joseph H. .
NATURE REVIEWS GENETICS, 2010, 11 (06) :446-450
[10]  
Fleuret F., 2003, P 3 INT WORKSH STAT, P1