Balanced 0, ± 1 matrices II.: Recognition algorithm

被引:8
作者
Conforti, M
Cornuéjols, G
Kapoor, A
Vuskovic, K
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
[2] Carnegie Mellon Univ, GSIA, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
基金
美国国家科学基金会;
关键词
balanced matrix; decomposition; recognition algorithm; 2-join; 6-join; extended star cutset;
D O I
10.1006/jctb.2000.2011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a polynomial time recognition algorithm for balanced 0, +/-1 matrices. This algorithm is based on a decomposition theory proved in a companion paper. (C) 2001 Academic Press.
引用
收藏
页码:275 / 306
页数:32
相关论文
共 6 条
[1]   STRUCTURAL-PROPERTIES AND RECOGNITION OF RESTRICTED AND STRONGLY UNIMODULAR MATRICES [J].
CONFORTI, M ;
RAO, MR .
MATHEMATICAL PROGRAMMING, 1987, 38 (01) :17-27
[2]   PROPERTIES OF BALANCED AND PERFECT MATRICES [J].
CONFORTI, M ;
RAO, MR .
MATHEMATICAL PROGRAMMING, 1992, 55 (01) :35-47
[3]   Decomposition of balanced matrices [J].
Conforti, M ;
Cornuéjols, G ;
Rao, MR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 77 (02) :292-406
[4]  
CONFORTI M, IN PRESS J COMBIN B
[5]  
CONFORTI M, 1994, MATH PROGRAMMING STA, P1
[6]   COMPOSITIONS FOR PERFECT GRAPHS [J].
CORNUEJOLS, G ;
CUNNINGHAM, WH .
DISCRETE MATHEMATICS, 1985, 55 (03) :245-254