Corrections to Schwarzschild solution in noncommutative gauge theory of gravity

被引:116
作者
Chaichian, M. [1 ,2 ]
Tureanu, A. [1 ,2 ]
Zet, G. [3 ]
机构
[1] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[2] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Gh Asachi Tech Univ, Dept Phys, Iasi 700050, Romania
基金
芬兰科学院;
关键词
D O I
10.1016/j.physletb.2008.01.029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A deformed Schwarzschild solution in noncommutative gauge theory of gravitation is obtained. The gauge potentials (tetrad fields) are determined up to the second order in the noncommutativity parameters Theta(mu nu). A deformed real metric is defined and its components are obtained. The noncommutativity correction to the red shift test of general relativity is calculated and it is concluded that the correction is too small to have observable effects. Implications of such a deformed Schwarzschild metric are also mentioned. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:573 / 578
页数:6
相关论文
共 34 条
[1]   Comments on noncommutative gravity [J].
Alvarez-Gaume, Luis ;
Meyer, Frank ;
Vazquez-Mozo, Miguel A. .
NUCLEAR PHYSICS B, 2006, 753 (1-2) :92-117
[2]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[3]  
BLOGOJEVIC M, 2002, GRAVITATION GAUGE SY
[4]   Noncommutative SO(n) and Sp(n) gauge theories [J].
Bonora, L ;
Schnabl, M ;
Sheikh-Jabbari, MM ;
Tomasiello, A .
NUCLEAR PHYSICS B, 2000, 589 (1-2) :461-474
[5]   Noncommutative general relativity [J].
Calmet, X ;
Kobakhidze, A .
PHYSICAL REVIEW D, 2005, 72 (04) :1-5
[6]   Second order noncommutative corrections to gravity [J].
Calmet, Xavier ;
Kobakhidze, Archil .
PHYSICAL REVIEW D, 2006, 74 (04)
[7]   Noncommutative deformation of four-dimensional Einstein gravity [J].
Cardella, MA ;
Zanon, D .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (08) :L95-L103
[8]   Quantum gravity: a progress report [J].
Carlip, S .
REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (08) :885-942
[9]   Twist as a symmetry principle and the noncommutative gauge theory formulation [J].
Chaichian, M. ;
Tureanu, A. ;
Zet, G. .
PHYSICS LETTERS B, 2007, 651 (04) :319-323
[10]   Twist symmetry and gauge invariance [J].
Chaichian, M. ;
Tureanu, A. .
PHYSICS LETTERS B, 2006, 637 (03) :199-202