Surface effects on capped and uncapped nanocrystals

被引:74
作者
Bryant, GW [1 ]
Jaskolski, W
机构
[1] NIST, Atom Phys Div, Gaithersburg, MD 20899 USA
[2] UMK, Inst Fizyki, PL-87100 Torun, Poland
关键词
D O I
10.1021/jp0535543
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface effects significantly influence the functionality of semiconductor nanocrystals. A theoretical understanding of these effects requires an atomic-scale description of the surface. We present an atomistic tight-binding theory of the electronic and optical properties of passivated and unpassivated CdS nanocrystals and CdS/ZnS core/shell nanocrystals. Fully passivated dots, with all dangling bonds saturated, have no surface states in the fundamental band gap, and all near-band-edge states are quantum-confined internal states. When surface anion dangling bonds are unpassivated, an anion-derived, narrow (bandwidth 0.05 eV), surface-state band lies 0.5 eV above the valence band edge, and a broader (0.2 eV) band of back-bonded surface states exists in the gap just above the valence band edge. When surface cation dangling bonds are unpassivated, a broad band of mixed surface/internal states exists above the conduction band edge. Partial passivation can push internal levels above the internal levels of a fully passivated dot or into the band gap. Because of this sensitivity to passivation, explicit models for surface effects are needed to describe accurately internal states. Capping the CdS dot with ZnS reduces the effect of the surface on the internal electronic states and optical properties. Six monolayers of ZnS are needed to eliminate the influence of any surface states on the internal states.
引用
收藏
页码:19650 / 19656
页数:7
相关论文
共 44 条
[1]   Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory [J].
Banin, U ;
Lee, CJ ;
Guzelian, AA ;
Kadavanich, AV ;
Alivisatos, AP ;
Jaskolski, W ;
Bryant, GW ;
Efros, AL ;
Rosen, M .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (06) :2306-2309
[2]   Electron spectrum of a semiconductor quantum dot influenced by an interface [J].
Braginsky, LS .
PHYSICAL REVIEW B, 1999, 60 (20) :R13970-R13973
[3]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[4]   Tight-binding theory of quantum-dot quantum wells:: Single-particle effects and near-band-edge structure -: art. no. 205320 [J].
Bryant, GW ;
Jaskólski, W .
PHYSICAL REVIEW B, 2003, 67 (20)
[5]   Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J].
Cao, YW ;
Banin, U .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (40) :9692-9702
[6]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[7]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[8]   Quantum dot molecules assembled with genetically engineered proteins [J].
Ding, SY ;
Jones, M ;
Tucker, MP ;
Nedeljkovic, JM ;
Wall, J ;
Simon, MN ;
Rumbles, G ;
Himmel, ME .
NANO LETTERS, 2003, 3 (11) :1581-1585
[9]  
Döllefeld H, 2001, NANO LETT, V1, P267, DOI [10.1021/nl015524r, 10.1021/n1015524r]
[10]   In vivo imaging of quantum dots encapsulated in phospholipid micelles [J].
Dubertret, B ;
Skourides, P ;
Norris, DJ ;
Noireaux, V ;
Brivanlou, AH ;
Libchaber, A .
SCIENCE, 2002, 298 (5599) :1759-1762