Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time

被引:696
作者
Lysaker, M [1 ]
Lundervold, A
Tai, XC
机构
[1] Univ Bergen, Dept Math, N-5009 Bergen, Norway
[2] Univ Bergen, Dept Physiol, N-5009 Bergen, Norway
关键词
fourth-order partial differential equations; MRI; noise removal; nonlinear filtering and enhancement; restoration;
D O I
10.1109/TIP.2003.819229
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new method for image smoothing based on a fourth-order PDE model. The method is tested on a broad range of real medical magnetic resonance images, both in space and time, as well as on nonmedical synthesized test images. Our algorithm demonstrates good noise suppression without destruction of important anatomical or functional detail, even at poor signal-to-noise ratio. We have also compared our method with related PDE models.
引用
收藏
页码:1579 / 1590
页数:12
相关论文
共 31 条
[1]   A wavelet-based method for improving signal-to-noise ratio and contrast in MR images [J].
Alexander, ME ;
Baumgartner, R ;
Summers, AR ;
Windischberger, C ;
Klarhoefer, M ;
Moser, E ;
Somorjai, RL .
MAGNETIC RESONANCE IMAGING, 2000, 18 (02) :169-180
[2]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2. [J].
ALVAREZ, L ;
LIONS, PL ;
MOREL, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :845-866
[3]  
Ben Hamza A, 2001, LECT NOTES COMPUT SC, V2134, P19
[4]   Robust anisotropic diffusion [J].
Black, MJ ;
Sapiro, G ;
Marimont, DH ;
Heeger, D .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :421-432
[5]  
Blomgren P, 2000, CH CRC RES NOTES, V420, P43
[6]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[7]   IMAGE SEGMENTATION BY VARIATIONAL-METHODS - MUMFORD AND SHAH FUNCTIONAL AND THE DISCRETE APPROXIMATIONS [J].
CHAMBOLLE, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :827-863
[8]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[9]   High-order total variation-based image restoration [J].
Chan, T ;
Marquina, A ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :503-516
[10]   A nonlinear primal-dual method for total variation-based image restoration [J].
Chan, TF ;
Golub, GH ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :1964-1977