Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method

被引:88
作者
Capolino, F
Wilton, DR
Johnson, WA
机构
[1] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[2] Sandia Natl Labs, Electromagnet & Plasma Phys Anal Dept, Albuquerque, NM 87185 USA
关键词
arrays; series acceleration; fast methods; green function; gratings; numerical methods; periodic structures;
D O I
10.1109/TAP.2005.854556
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Ewald method is applied to accelerate the evaluation of the Green's function of an infinite periodic phased array of line sources. The Ewald representation for a cylindrical wave is obtained from the known representation for the spherical wave, and a systematic general procedure is applied to extend previous results. Only a few terms are needed to evaluate Ewald sums, which are cast in terms of error functions and exponential integrals, to high accuracy. Singularities and convergence rates are analyzed, and a recipe for selecting the Ewald splitting parameter epsilon is given to handle both low and high frequency ranges. Indeed, it is shown analytically that the choice of the standard optimal splitting parameter Eo will cause overflow errors at high frequencies. Numerical examples illustrate the results and the sensitivity of the Ewald representation to the splitting parameter epsilon.
引用
收藏
页码:2977 / 2984
页数:8
相关论文
共 16 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Mode excitation from sources in two-dimensional EBG waveguides using the array scanning method [J].
Capolino, F ;
Jackson, DR ;
Wilton, DR .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2005, 15 (02) :49-51
[3]   Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source [J].
Capolino, F ;
Jackson, DR ;
Wilton, DR .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (01) :91-99
[4]  
CAPOLINO F, 2002, IEEE AP S S SAN ANT
[5]   CRITICAL DISTANCE FOR GRATING LOBE SERIES [J].
COHEN, E .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1991, 39 (05) :677-679
[6]  
Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253
[7]  
Felsen L. B., 1973, RAD SCATTERING WAVES
[8]  
JACKSON DR, 1998, URSI INT S EL THEOR
[9]   AN EFFICIENT NUMERICAL EVALUATION OF THE GREEN-FUNCTION FOR THE HELMHOLTZ OPERATOR ON PERIODIC STRUCTURES [J].
JORDAN, KE ;
RICHTER, GR ;
SHENG, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 63 (01) :222-235
[10]   On the splitting parameter in the Ewald method [J].
Kustepeli, A ;
Martin, AQ .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (05) :168-170