Information encoded in a network of inflammation proteins predicts clinical outcome after myocardial infarction

被引:17
作者
Azuaje, Francisco J. [1 ]
Rodius, Sophie [1 ]
Zhang, Lu [1 ]
Devaux, Yvan [1 ]
Wagner, Daniel R. [1 ,2 ]
机构
[1] Publ Res Ctr Hlth CRP Sante, Cardiovasc Res Lab, L-1150 Luxembourg, Luxembourg
[2] Ctr Hosp, Div Cardiol, L-1210 Luxembourg, Luxembourg
关键词
HEART-FAILURE; GENE PRIORITIZATION; EXPRESSION; MECHANISMS; BIOMARKERS; DATABASE; DISEASE; BIOLOGY; MARKERS; RISK;
D O I
10.1186/1755-8794-4-59
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Inflammation plays an important role in cardiac repair after myocardial infarction (MI). Nevertheless, the systems-level characterization of inflammation proteins in MI remains incomplete. There is a need to demonstrate the potential value of molecular network-based approaches to translational research. We investigated the interplay of inflammation proteins and assessed network-derived knowledge to support clinical decisions after MI. The main focus is the prediction of clinical outcome after MI. Methods: We assembled My-Inflamome, a network of protein interactions related to inflammation and prognosis in MI. We established associations between network properties, disease biology and capacity to distinguish between prognostic categories. The latter was tested with classification models built on blood-derived microarray data from post-MI patients with different outcomes. This was followed by experimental verification of significant associations. Results: My-Inflamome is organized into modules highly specialized in different biological processes relevant to heart repair. Highly connected proteins also tend to be high-traffic components. Such bottlenecks together with genes extracted from the modules provided the basis for novel prognostic models, which could not have been uncovered by standard analyses. Modules with significant involvement in transcriptional regulation are targeted by a small set of microRNAs. We suggest a new panel of gene expression biomarkers (TRAF2, SHKBP1 and UBC) with high discriminatory capability. Follow-up validations reported promising outcomes and motivate future research. Conclusion: This study enhances understanding of the interaction network that executes inflammatory responses in human MI. Network-encoded information can be translated into knowledge with potential prognostic application. Independent evaluations are required to further estimate the clinical relevance of the new prognostic genes.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Gene prioritization through genomic data fusion [J].
Aerts, S ;
Lambrechts, D ;
Maity, S ;
Van Loo, P ;
Coessens, B ;
De Smet, F ;
Tranchevent, LC ;
De Moor, B ;
Marynen, P ;
Hassan, B ;
Carmeliet, P ;
Moreau, Y .
NATURE BIOTECHNOLOGY, 2006, 24 (05) :537-544
[2]   BABELOMICS:: a systems biology perspective in the functional annotation of genome-scale experiments [J].
Al-Shahrour, Fatima ;
Minguez, Pablo ;
Tarraga, Joaquin ;
Montaner, David ;
Alloza, Eva ;
Vaquerizas, Juan M. ;
Conde, Lucia ;
Blaschke, Christian ;
Vera, Javier ;
Dopazo, Joaquin .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W472-W476
[3]   The IntAct molecular interaction database in 2010 [J].
Aranda, B. ;
Achuthan, P. ;
Alam-Faruque, Y. ;
Armean, I. ;
Bridge, A. ;
Derow, C. ;
Feuermann, M. ;
Ghanbarian, A. T. ;
Kerrien, S. ;
Khadake, J. ;
Kerssemakers, J. ;
Leroy, C. ;
Menden, M. ;
Michaut, M. ;
Montecchi-Palazzi, L. ;
Neuhauser, S. N. ;
Orchard, S. ;
Perreau, V. ;
Roechert, B. ;
van Eijk, K. ;
Hermjakob, H. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D525-D531
[4]  
AZUAJE F, J BIOMED INFORM
[5]   Transcriptional networks characterize ventricular dysfunction after myocardial infarction: A proof-of-concept investigation [J].
Azuaje, Francisco ;
Devaux, Yvan ;
Vausort, Melanie ;
Yvorra, Celine ;
Wagner, Daniel R. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2010, 43 (05) :812-819
[6]   Coordinated modular functionality and prognostic potential of a heart failure biomarker-driven interaction network [J].
Azuaje, Francisco ;
Devaux, Yvan ;
Wagner, Daniel R. .
BMC SYSTEMS BIOLOGY, 2010, 4
[7]   Integrative Pathway-Centric Modeling of Ventricular Dysfunction after Myocardial Infarction [J].
Azuaje, Francisco ;
Devaux, Yvan ;
Wagner, Daniel R. .
PLOS ONE, 2010, 5 (03)
[8]   Computational biology for cardiovascular biomarker discovery [J].
Azuaje, Francisco ;
Devaux, Yvan ;
Wagner, Daniel .
BRIEFINGS IN BIOINFORMATICS, 2009, 10 (04) :367-377
[9]   Biomarkers in heart failure [J].
Braunwald, Eugene .
NEW ENGLAND JOURNAL OF MEDICINE, 2008, 358 (20) :2148-2159
[10]   MINT, the molecular interaction database: 2009 update [J].
Ceol, Arnaud ;
Aryamontri, Andrew Chatr ;
Licata, Luana ;
Peluso, Daniele ;
Briganti, Leonardo ;
Perfetto, Livia ;
Castagnoli, Luisa ;
Cesareni, Gianni .
NUCLEIC ACIDS RESEARCH, 2010, 38 :D532-D539