Connection between Feynman integrals having different values of the space-time dimension

被引:395
作者
Tarasov, OV
机构
[1] Deutsches Electronen-Synchrotron DESY, Institut für Hochenergiephysik IfH, Zeuthen, Zeuthen, D-15738
来源
PHYSICAL REVIEW D | 1996年 / 54卷 / 10期
关键词
D O I
10.1103/PhysRevD.54.6479
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals with respect to the space-time dimension d is proposed. The relation between d- and (d-2)-dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two-, and three-loop integrals. The new recurrence relations with respect to d are complementary to the recurrence relations which derive from the method of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be naturally solved in the framework of the proposed generalized recurrence relations.
引用
收藏
页码:6479 / 6490
页数:12
相关论文
共 33 条
[1]  
ALFARO V, 1965, HIGH ENERG PHYS, P263
[2]  
Amit D. J., 1978, FIELD THEORY RENORMA
[3]   O(ALPHA-ALPHA(S)(2)) CORRECTION TO THE ELECTROWEAK RHO-PARAMETER [J].
AVDEEV, L ;
FLEISCHER, J ;
MIKHAILOV, S ;
TARASOV, O .
PHYSICS LETTERS B, 1994, 336 (3-4) :560-566
[4]  
AVDEEV L, 1995, PHYS LETT B, V349, P597
[5]   ANALYTICAL AND NUMERICAL-METHODS FOR MASSIVE 2-LOOP SELF-ENERGY DIAGRAMS [J].
BAUBERGER, S ;
BERENDS, FA ;
BOHM, M ;
BUZA, M .
NUCLEAR PHYSICS B, 1995, 434 (1-2) :383-407
[6]   ALMOST ZERO-DIMENSIONAL QUANTUM-FIELD THEORIES [J].
BENDER, CM ;
BOETTCHER, S ;
LIPATOV, L .
PHYSICAL REVIEW D, 1992, 46 (12) :5557-5573
[7]   ASYMPTOTIC EXPANSION OF FEYNMAN AMPLITUDES .1. CONVERGENT CASE [J].
BERGERE, MC ;
LAM, YMP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 39 (01) :1-32
[8]   DIMENSIONALLY-REGULATED PENTAGON INTEGRALS [J].
BERN, Z ;
DIXON, L ;
KOSOWER, DA .
NUCLEAR PHYSICS B, 1994, 412 (03) :751-816
[9]  
Bogoliubov N.N., 1980, Introduction to theory of quantized fields
[10]  
BOLLINI CG, 1972, NUOV CIMEN S I FIS B, VB 12, P20