Cell wall -: Associated mechanisms of disease resistance and susceptibility

被引:431
作者
Hueckelhoven, Ralph [1 ]
机构
[1] Tech Univ Munich, D-85350 Freising Weihenstephan, Germany
关键词
apoplastic pH; cytoskeleton; host reprogramming; papilla; reactive oxygen species; secretion;
D O I
10.1146/annurev.phyto.45.062806.094325
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The plant cuticle and cell wall separate microbial pathogens from the products of plant metabolism. While microbial pathogens try to breach these barriers for colonization, plants respond to attempted penetration by a battery of wall-associated defense reactions. Successful pathogens circumvent or suppress plant nonself recognition and basal defense during penetration and (luring microbial reproduction. Additionally, accommodation of fungal infection structures within intact cells requires host reprogramming. Recent data highlight that both early plant defense to fungal penetration and host reprogramming for susceptibility can function at the host cell periphery. Genetic evidence has also widened our understanding of how fungal pathogens are restricted during penetration at the plant cell wall. This review summarizes the current view of how plants monitor and model their cell periphery during interaction with rnicrobial invaders.
引用
收藏
页码:101 / 127
页数:27
相关论文
共 173 条
[1]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[2]   Host-parasite coevolutionary conflict between Arabidopsis and downy mildew [J].
Allen, RL ;
Bittner-Eddy, PD ;
Grenvitte-Briggs, LJ ;
Meitz, JC ;
Rehmany, AP ;
Rose, LE ;
Beynon, JL .
SCIENCE, 2004, 306 (5703) :1957-1960
[3]   Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus [J].
An, QL ;
Hückelhoven, R ;
Kogel, KH ;
Van Bel, AJE .
CELLULAR MICROBIOLOGY, 2006, 8 (06) :1009-1019
[4]   Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi [J].
Annis, SL ;
Goodwin, PH .
EUROPEAN JOURNAL OF PLANT PATHOLOGY, 1997, 103 (01) :1-14
[5]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[6]   The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae\ [J].
Assaad, FF ;
Qiu, JL ;
Youngs, H ;
Ehrhardt, D ;
Zimmerli, L ;
Kalde, M ;
Wanner, G ;
Peck, SC ;
Edwards, H ;
Ramonell, K ;
Somerville, CR ;
Thordal-Christensen, H .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (11) :5118-5129
[7]   Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus [J].
Bechinger, C ;
Giebel, KF ;
Schnell, M ;
Leiderer, P ;
Deising, HB ;
Bastmeyer, M .
SCIENCE, 1999, 285 (5435) :1896-1899
[8]  
BEISSCHEDLER LV, 1992, PLANT J, P259
[9]   Apoplastic synthesis of nitric oxide by plant tissues [J].
Bethke, PC ;
Badger, MR ;
Jones, RL .
PLANT CELL, 2004, 16 (02) :332-341
[10]   Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain [J].
Bhat, RA ;
Miklis, M ;
Schmelzer, E ;
Schulze-Lefert, P ;
Panstruga, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (08) :3135-3140