Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement

被引:91
作者
de Burgh, M [1 ]
Bartlett, SD
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[2] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 04期
关键词
D O I
10.1103/PhysRevA.72.042301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce methods for clock synchronization that make use of the adiabatic exchange of nondegenerate two-level quantum systems: ticking qubits. Schemes involving the exchange of N independent qubits with frequency omega give a synchronization accuracy that scales as (omega root N)(-1)-i.e., as the standard quantum limit. We introduce a protocol that makes use of N-c coherent exchanges of a single qubit at frequency omega, leading to an accuracy that scales as (omega N-c)(-1) ln N-c. This protocol beats the standard quantum limit without the use of entanglement, and we argue that this scaling is the fundamental limit for clock synchronization allowed by quantum mechanics. We analyze the performance of these protocols when used with a lossy channel.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Optimal encoding and decoding of a spin direction -: art. no. 052309 [J].
Bagan, E ;
Baig, M ;
Brey, A ;
Muñoz-Tapia, R ;
Tarrach, R .
PHYSICAL REVIEW A, 2001, 63 (05) :523091-523091
[2]   Classical and quantum communication without a shared reference frame [J].
Bartlett, SD ;
Rudolph, T ;
Spekkens, RW .
PHYSICAL REVIEW LETTERS, 2003, 91 (02)
[3]   Optimal states and almost optimal adaptive measurements for quantum interferometry [J].
Berry, DW ;
Wiseman, HM .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5098-5101
[4]   Optimal frequency measurements with maximally correlated states [J].
Bollinger, JJ ;
Itano, WM ;
Wineland, DJ ;
Heinzen, DJ .
PHYSICAL REVIEW A, 1996, 54 (06) :R4649-R4652
[5]   Comment on "Quantum clock synchronization based on shared prior entanglement" [J].
Burt, EA ;
Ekstrom, CR ;
Swanson, TB .
PHYSICAL REVIEW LETTERS, 2001, 87 (12) :129801-129801
[6]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[7]   Quantum algorithm for distributed clock synchronization [J].
Chuang, IL .
PHYSICAL REVIEW LETTERS, 2000, 85 (09) :2006-2009
[8]  
Cirac J. I., 2002, EXPT QUANTUM COMPUTA, V148, P263
[9]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[10]  
Eddington A.S., 1924, The Mathematical Theory of Relativity